
Advanced Programming
[Polymorphsim]

Zeinab Zali

References: (1) "C++ How to program" Deitel&Deitel, (2) "A Tour of C++" Bjarne Stroustrup,
(3) Other useful learning pages such as geeksforgeeks and tutorialpoints

ECE Department, Isfahan University of Technology

Isfahan University of Technology 1

Polymorphism Motivation

Animals with different languages

Isfahan University of Technology 2

Polymorphism Motivation

Animals with different languages

It is desired to have an array of Animal (base-class) objects

We want to add new animals of different types (derived classes)
to this array in runtime

We expect to see the functionality of each type (derived class)
for each different animal in the array, not the functionality of the
generic Animal (base class)

Isfahan University of Technology 3

Polymorphism Motivation

Let’s Start with Some Steps

1 Assigning the address of derived-class to a base-class pointer
(Ok)

2 Assigning the address of base-class to a derived-class pointer
(Compile Error)

3 Invoking inherited member functions of base-class pointer that
aimed to a derived-class (Ok, base-class version is called)

4 Invoking derived-class only members from a base-class pointer
that aimed to a derived class (Compile Error)

5 Invoking derived class functionality from a base-class pointer
(How? with polymorphism)

Isfahan University of Technology 4

Polymorphism Upcasting

Converting a Derived Class Object to a Base-class

Upcasting is converting a derived-class reference or pointer to a
base-class.

For example assigning a rectangle object to a Shape pointer

Isfahan University of Technology 5

Polymorphism Upcasting

Which Functionality is Observed?

Assigning the address of a derived-class object to a base-class
is valid, because each derived class object is a base class
object too.

Invoking a function via the base-class pointer invokes the
base-class functionality in the derived-class object

The type of the handle determines which function is called

1 Shape *s1;
2 Rectangle r1;
3 Shape *r2 = new Rectangle (10 ,20) ; //Ok , each

rectangle is a shape
4 s1 = &r1; // Ok
5 cout << r2 -> getArea () << endl ; // Shape getArea is

called
6 cout << s1 -> getArea () << endl ;
7 // cout << s1 -> getLen () << endl ; // Compile Error

Isfahan University of Technology 6

Polymorphism Downcasting

Converting a Base-class Object to a Derived Class

Downcasting is an opposite process to the upcasting, which
converts the base class’s pointer or reference to the derived class’s
pointer or reference.

For example assigning a Shape object to a Rectangle pointer

Isfahan University of Technology 7

Polymorphism Downcasting

Converting a Base-class Object to a Derived Class

Assigning the address of a base-class object to a derived-class
pointer results in a compilation error.

Because not every base-class object is a derived class one (not
every Shape is necessarily a Rectangle)

1 Rectangle *r3;
2 r3= new Shape (4) ; // Compile error , a shape may not

be a rectangle
3 Shape s2;
4 // r3 = s2; // Compile error

Isfahan University of Technology 8

Polymorphism Downcasting

Explicit Downcasting

The compiler will allow access to derived-class-only members
from a base-class pointer that’s aimed at a derived-class object
if we explicitly cast the base-class pointer to a derived-class
pointer

Downcasting is a potentially dangerous operation

1 r3 = (Rectangle *)&s2; //Ok , Explicit casting
2 cout << r3 -> getLen () << endl ; // we can call getLen ,

but the len data of rectangle may not be initialized ,
so unknown value

3 r3 -> setLen (10) ; // valid . Assigning a
value to a data mamber with member function of derived
class

Isfahan University of Technology 9

Polymorphism Polymorphic Behavior

Virtual Functions

A virtual function is a member function which is declared within a
base class and is redefined (overridden) by a derived class.

If we do declare the base-class function as virtual , we can
override that func- tion to enable polymorphic behavior

Recall that the type of the handle determined which class’s
functionality to invoke

With virtual functions, the type of the object—not the type of
the handle used to invoke the object’s member
function—determines which version of a virtual function to
invoke.

Isfahan University of Technology 10

Polymorphism Polymorphic Behavior

Virtual Functions

We can declare every member function (except constructors) of a
base class as a virtual function, by adding a virtual keyword before
the function.

1 class Shape {
2 protected :
3 const int sidesNum ;
4 public :
5 Shape (): sidesNum (4) {

7 }
8 Shape (int s): sidesNum (s){
9 cout << " Shape Constructor \n";
10 }
11 virtual float getArea (){
12 cout << " Shape getArea ()\n";
13 return 0;
14 }

Isfahan University of Technology 11

Polymorphism Polymorphic Behavior

Overriding Virtual Functions

We can override a virtual function by redefining it in the derived
class

An overridden function in a derived class has the same
signature and return type (i.e., prototype) as the function it
overrides in its base class

If we do not declare the base-class function as virtual , we can
redefine that function, but it does not result in polymorphic
behavior

1 class Rectangle : public Shape {
2 public :
3 float getArea (){
4 cout << " Rectangle getArea ()\n";
5 return width * len ;
6 }

Isfahan University of Technology 12

Polymorphism Polymorphic Behavior

Dynamic Binding

Choosing the appropriate function to call at execution time (rather
than at compile time) is known as dynamic binding

If a program invokes a virtual function through a base-class
pointer to a derived-class object (e.g., s1->getArea()) or a
base-class reference to a derived-class object
(e.g.,s3.getArea()), the program will choose the correct
derived-class function dynamically (i.e., at execution time)
based on the object type—not the pointer or reference type.

1 Shape *s1 = new Rectangle (10 ,20) ;
2 Shape *s2 = new Shape (4) ;
3 Rectangle r1 (10 ,20) ;
4 Shape &s3 = r1;
5 cout << s1 -> getArea () << endl ; // rectangle getArea
6 cout << s3. getArea () << endl ; // rectangle getArea
7 cout << ((Rectangle *) s2) -> getArea ();// Shape getArea

Isfahan University of Technology 13

Polymorphism Polymorphic Behavior

Inheriting Virtual Characteristic

Once a function is declared virtual , it remains virtual all the way
down the inheritance hierarchy from that point, even if that
function is not explicitly declared virtual when a derived class
overrides it.

When a derived class chooses not to override a virtual function
from its base class, the derived class simply inherits its base
class’s virtual function implementation.

1 Shape *s4 = new Box (10 ,20 ,30) ;
2 cout << s4 -> getArea () << endl ; // Box getArea ,

recall Box is derived from Rectangle and getArea is
also overriden in Box class

Isfahan University of Technology 14

Polymorphism Polymorphic Behavior

Dynamic Binding, Another Example

Here, we have an array of Shape pointers, but dynamically, fill it with
different shapes with their own behaviors (polymorphic)

1 int type ;
2 int num = 3;
3 Shape * figs [num];
4 for (int i =0;i< num ;i ++) {
5 cout << " which shapes do you want to add ?";
6 cout << " (1) Rectangle ,(2) Circle , (3) Box ?:\ n";
7 cin >> type ;
8 switch (type){
9 case 1: figs [i] = new Rectangle (10 ,10) ; break ;
10 case 2: figs [i] = new Circle (10) ; break ;
11 case 3: figs [i] = new Box (10 ,10 ,10) ; break ;
12 }
13 }
14 for (int i =0;i< num ;i ++) {
15 cout << figs [i]-> getArea () << endl ; // getArea is

called according to exact type of figs [i] (not Shape
getArea)

16 }

Isfahan University of Technology 15

Polymorphism A few Notes about Polymorphism

Virtual Destructors

If a derived-class object with a non-virtual destructor is
destroyed by applying the delete operator to a base-class
pointer to the object, the C++ standard specifies that the
behavior is undefined.

The simple solution to this problem is to create a public virtual
destructor in the base class.

If a base-class destructor is declared virtual, the destructors of
any derived classes are also virtual.

with virtual destructor in base class, if an object in the hierarchy
is destroyed explicitly by applying the delete operator to a
base-class pointer, the destructor for the appropriate class is
called, based on the object to which the base-class pointer
points.

Isfahan University of Technology 16

Polymorphism A few Notes about Polymorphism

default Keyword

For making the default destructor of a base class to a virtual
destructor, you can use =default keyword.

In C++11, you can tell the compiler to explicitly generate the
default version of a default constructor, copy constructor, or
destructor by following the special member function’s
prototype with = default

1 virtual ~ Shape () = default ;

Isfahan University of Technology 17

Polymorphism A few Notes about Polymorphism

Override Keyword

1 float getArea () override {
2 cout << " Box getArea ()\n";
3 return 2 * (Rectangle :: getArea () +
4 height * getWidth () +
5 height * getLen ());
6 }

1 // compile Error , because getVolume is not a virtual
member function in base class

2 double getVolume () override {
3 cout << " Box getVolume ()\n";
4 return height * Rectangle :: getArea ();
5 }

Isfahan University of Technology 18

Polymorphism A few Notes about Polymorphism

Final Keyword

In C++11, a base-class virtual function that’s declared final in its
prototype, cannot be overridden in any derived class

this guarantees that the base class’s final member function
definition will be used by all base-class objects and by all
objects of the base class’s direct and indirect derived classes.
Also,as of C++11, you can declare a class as final to prevent it
from being used as a base class.
Attempting to override a final member function or inherit from a
final base class results in a compilation error.

1 virtual void f() final { // making virtual f fuction
final to avoid overriding it

2 cout <<"f in Rectangle \n";
3 }

1 class Circle final : public Shape { // making Circle final to
avoid making a derived class from it

Isfahan University of Technology 19

Polymorphism Abstract Class

Pure Virtual Function

An abstract class is a template class of member functions and data
members from which you never intend to instantiate any objects.

An abstract class is a base class from which other classes can
inherit

abstract classes are incomplete, so derived classes must define
the “missing pieces” before objects of these classes can be
instantiated.

A class is made abstract by declaring one or more of its virtual
functions to be “pure”. A pure virtual function is specified by
placing “= 0 ” in its declaration

Isfahan University of Technology 20

Polymorphism Abstract Class

Virtual vs Pure Virtual

Virtual function has an implementation and gives the derived
class the option of overriding the function;

A pure virtual function does not have an implementation and
requires the derived class to override the function for that
derived class to be concrete; otherwise the derived class
remains abstract.

Pure virtual functions are used when it does not make sense for
the base class to have an implementation of a function, but you
want to force all concrete derived classes to implement the
function.

Isfahan University of Technology 21

Polymorphism Abstract Class

Abstract class and polymorphism

Although we cannot instantiate objects of an abstract base
class, we can use the abstract base class to declare pointers
and references that can refer to objects of any concrete classes
derived from the abstract class.

Programs typically use such pointers and references to
manipulate derived-class objects polymorphically.

Isfahan University of Technology 22

Polymorphism Abstract Class

Abstract Class Example

We need to be more specific before we can think of
instantiating objects.
Concrete classes provide the specifics that make it possible to
instantiate objects.

For example, if someone tells you to “draw the two-dimensional
shape,” what shape would you draw?

Isfahan University of Technology 23

Polymorphism Abstract Class

Abstract Class Applications (Device Drivers)

From the application view over the system call layer, we can call
read/write function for all the devices with different types through

the same prototype.

Isfahan University of Technology 24

Polymorphism Diamond

Problem Statement

The inheritance model described in this figure (for the example of
multiple inheritance to form class basic_iostream) is referred to as
diamond inheritance

Class basic_iostream could contain two copies of the members
of class basic_ios—one inherited via class basic_istream and
one inherited via class basic_ostream.
Such a situation would be ambiguous and would result in a
compilation error, because the compiler would not know which
version of the members from class basic_ios to use.

Isfahan University of Technology 25

Polymorphism Diamond

Example: Person base class

1 class Person {
2 static int idGen ;
3 protected :
4 string name ;
5 string family ;
6 int id;
7 public :
8 Person ():id(idGen ++) {
9 cout << " Person default constructor \n";
10 }
11 Person (string namestr , string familystr): name (namestr),

family (familystr),id(idGen ++) {
12 cout << " Person constructor \n";
13 }
14 int getID (){
15 return id;
16 }
17 virtual void print () =0;

19 };
20 int Person :: idGen = 1;

Isfahan University of Technology 26

Polymorphism Diamond

Example: Student derived from person

1 class Student : public Person {
2 static int idGen ;
3 protected :
4 int stdID ;
5 public :
6 Student (): stdID (idGen ++) {
7 cout << " Student default constructor \n";
8 }
9 Student (string name , string family): Person (name , family

), stdID (idGen ++) {
10 cout << " Student constructor \n";
11 }
12 void print (){
13 cout <<"\ nprint Student \n";
14 cout <<" Person ID: " << id << endl ;
15 cout <<" Person name : " << name << ", family : " <<

family << endl ;
16 cout << " Student ID: " << stdID << endl ;

18 }
19 };
20 int Student :: idGen = 1;

Isfahan University of Technology 27

Polymorphism Diamond

Example: Faculty derived from Person

1 class Faculty : public Person {
2 static int idGen ;
3 protected :
4 int facID ;
5 public :
6 Faculty (): facID (idGen ++) {
7 cout << " Faculty default constructor \n";
8 }
9 Faculty (string name , string family): Person (name , family

), facID (idGen ++) {
10 cout << " Faculty constructor \n";
11 }
12 void print (){
13 cout <<"\ nprint Faculty \n";
14 cout <<" Person ID: " << id << endl ;
15 cout <<" Person name : " << name << ", family : " <<

family << endl ;
16 cout << " Faculty ID: " << facID << endl ;

18 }
19 };
20 int Faculty :: idGen = 1;

Isfahan University of Technology 28

Polymorphism Diamond

Example: TA derived from both Student and Faculty

1 class TA: public Student , public Faculty {
2 protected :
3 int exp ;
4 public :
5 TA (): exp (0) {
6 cout << "TA default constructor \n";
7 }
8 TA(string name , string family , int exp): Student (name ,

family),exp (exp){
9 cout << "TA constructor \n";
10 }
11 void print (){
12 cout <<"\ nprint TA\n";
13 cout <<" Person ID: " << id << endl ;// compile error ,

reference to id is ambiguous
14 cout <<" Person name : " << name << ", family : " <<

family << endl ;// compile error
15 cout << " Student ID: " << stdID <<", Faculty ID: " <<

facID << endl ;
16 cout << "TA experience : " << exp << endl ;
17 }
18 };

Isfahan University of Technology 29

Polymorphism Diamond

Example: instantiating some TAs

1 TA t1;
2 TA t2;
3 cout <<"t1 id: " <<t1. getID ();// compile error , getID ()

is ambiguous , because of two versions from both Student
and Faculty

4 cout <<"t1 person id: " <<t1. Student :: getID () << endl ; //
OK. Using scope resolution to solve the ambiguity

5 cout <<"t2 person id: " <<t2. Student :: getID () << endl ;

Isfahan University of Technology 30

Polymorphism Diamond

Example: Instantiating Some TAs

Calling getID() from a TA object results in an ambiguity, because
getID() is inherited from Person twice in the TA object.

It results in compile error.

Instantiating each object of TA results in executing Person
constructor twice.

It results in generating wrong person ID.

Isfahan University of Technology 31

Polymorphism Diamond

Excercise: Instantiating Some TAs

1 TA(string name , string family , int exp): Student (name ,
family),exp (exp){

2 cout << "TA constructor \n";
3 }

Execute the following code and analyse the result.

Pay atention to TA constructor and its member initializer list.

Try to explicitly call constructor of Faculty and analyze the
execution result.

Remove explicitly calling Student constructor and analyze the
execution result.

Try to explicitly call constructor of Person

1 TA t3(" Ali ", " Rahimi " ,3);
2 t3. Student :: print ();
3 t3. Faculty :: print ();

Isfahan University of Technology 32

Polymorphism Diamond

Polymorphic Behavior in Diamond

1 Person *p [3];
2 p [0] = new Student (" Arezou "," Rad ");
3 p [1] = new Faculty (" Ali "," Amiri ");
4 p [2] = new TA(" Sahar "," Sadeghi " ,2);// can not be

instantiated , base class Person is ambiguous

6 for (int i =0;i <3; i ++)
7 p[i]-> print ();

Isfahan University of Technology 33

Polymorphism Diamond

Solution: Virtual Inheritance

The problem of duplicate subobjects is resolved with virtual
inheritance.

When a base class is inherited as virtual , only one subobject
will appear in the derived class—a process called virtual
base-class inheritance.

1 class Student : virtual public Person {

1 class Faculty : virtual public Person {

Isfahan University of Technology 34

Polymorphism Diamond

Instantiating after Virtual Inheritance

Pay atention to constructors’ calls
1 TA t1;
2 TA t2;
3 cout <<"t1 person id: " <<t1. getID () << endl ;//Ok , getID ()

is not ambiguous
4 cout <<"t2 person id: " <<t2. getID () << endl ;

Isfahan University of Technology 35

Polymorphism Diamond

Polymorphic Behavior in Diamond

Now we can explicitly call Person constructor in the member
initializer list of TA constructor

1 TA(string name , string family , int exp): Person (name ,
family),exp (exp){

2 cout << "TA constructor \n";
3 }

1 Person *p [3];
2 p [0] = new Student (" Arezou "," Rad ");
3 p [1] = new Faculty (" Ali "," Amiri ");
4 p [2] = new TA(" Sahar "," Sadeghi " ,2);// OK
5 for (int i =0;i <3; i ++)
6 p[i]-> print ();

Isfahan University of Technology 36

Polymorphism Diamond

Isfahan University of Technology 37

	Templates
	Motivation
	Function Templates
	Class Templates

