Advanced Programming

Inheritance Relationship

Zeinab Zali

References: (1) "C++ How to program" Deitel&Deitel, (2) "A Tour of C++" Bjarne Stroustrup,
(3) Other useful learning pages such as geeksforgeeks and tutorialpoints

ECE Department, Isfahan University of Technology

Isfahan University of Technology

Motivation

Isfahan University of Technology

Inheritance Relationship Motivation

Inheritance in Objects

Base class Derived classes

Student GraduateStudent, UndergraduateStudent
Shape Circle, Triangle, Rectangle, Sphere, Cube
Loan CarLoan, HomeImprovementLoan, Mortgageloan
Employee Faculty, Staff

Account CheckingAccount, SavingsAccount

Isfahan University of Technology

Inheritance Relationship Motivation

Inheritance in Objects

CommunityMember
Employee Student Alumnus
Faculty Staff Single
inheritance
Administrator Teacher .SI nele
inheritance
AdministratorTeacher Mulu_p e
inheritance

Single
inheritance

Isfahan University of Technology

Inheritance Rela Motivation

Inheritance in Objects

Shape

int side_num
draw()
getAreal()
Shape(int side_numy)

Rectangle | [Triangle | | Circle
float width sides[3] float radius
float length angles[3] Circle(float r)
Rectangle(float w float) Triangle(float® s , int* a)
/ '\ /
Square] | Box
squarelfloat s) float height

Box(float w, float|, float h)
getVolume()

Isfahan University of Technology

nce Relationship Motivation

Class Hierarchies

Base Class

Shape

int side_num

draw()

getArea()

Shape(int side_num)

drived class of Sha

Rectangle | | Triangle | | Circle
float width sides[3] float radius
float length angles[3] Circle(float r)
Rectangle(float w float 1) Triangle(float* s , int* a)
Square | | Box
square(float s) float height

Box(float w, float |, float h)
getVolume()

drived class of Rectangle drived class of Rectangle

Isfahan University of Technology

Inheritance Relationship Motivation

Without using Inheritance

| Shape | Rectangle Triangle
int side_num int side_num int side_num
draw() float width float sides[3]
gethreal) float length int angles[3]
Shape(int side_num}) Rectangle(float w float 1) Triangle(float* s , int* a)
draw() draw()
getArea() getAreal)

Square Box Sphere Circle
int side_num int side_num float radius float radius
float width float width getAreal) Circle(float r)
float length float length draw() gethreal)
Squarelfloat side) float height getVolume() draw(}
draw() Boxifloat w,float |, float h)
getAreal) draw()

getArea()

getVolumel)

Isfahan University of Technology

Inheritance Relationship Motivation

Without using Inheritance

Most of the codes for these classes are similar.

Ao Software Engineering Observation I1.1
% Copying and pasting code from one class to another can spread many physical copies of the
=2 same code and can spread errors throughout a system, creating a code-maintenance
nightmare. To avoid duplicating code (and possibly errors), use inheritance, rather than
the “copy-and-paste” approach, in situations where you want one class to “absorb” the
data members and member functions of another class.

With inheritance, the common data members and member functions of all the classes in

=23 the hierarchy are declared in a base class. When changes are required for these common
features, you need to make the changes only in the base class—derived classes then inberit
the changes. Without inberitance, changes would need to be made to all the source-code
files that contain a copy of the code in question.

§. i 9 Software Engineering Observation 11.2

Isfahan University of Technology

Inheritance Relationship Concepts

Base and Drived Classes

Inheritance enables you to create a class that absorbs an existing
class's capabilities, then customizes or enhances them.

@ The existing class is called the base class (super class), and the
new class is called the derived class (sub class).

@ A derived class represents a more specialized group of objects.

Isfahan University of Technology].O

Inheritance Relationship Concepts

is-a relationship

@ With public inheritance, every object of a derived class is also
an object of that derived class's base class. However,
base-class objects are not objects of their derived classes.

@ For example, if we have Vehicle as a base class and Car as a
derived class, then all Cars are Vehicles, but not all Vehicles are
Cars—for example, a Vehicle could also be a Truck or a Boat.

Isfahan University of Technology 11

Inheritance Relationship Concepts

is-a relationship

@ The is-arelationship represents inheritance. In an is-a
relationship, an object of a derived class also can be treated as
an object of its base class—for example, a Car is a Vehicle, so
any attributes and behaviors of a Vehicle are also attributes and
behaviors of a Car.

@ By contrast, the has-a relationship represents composition. In a
has-a relationship, an object contains one or more objects of
other classes as members. For example, a Car has many
components—it has a steering wheel, has a brake pedal, has a
transmission

Isfahan University of Technology 12

Inheritance Relatio Inheritance, How?

Base Class: Shape

1

© W N O ;A W N

19
20

class Shape{
const int sidesNum;
public:
Shape () : sidesNum (4) {

cout << "Shape default Constructor\n'";

}
Shape (int s) :sidesNum (s) {
cout << "Shape Constructor\n";
}
int getSidesNum () {
return sidesNum;

int getArea () {
cout << "Shape getArea () \n'";
return 1;

}

~Shape () {
cout << "Shape destructor\n'";

b

Isfahan University of Technology

13

Inheritance Relationship Inheritance, How?

Derived Class: Rectangle

lclass Rectangle: public Shape/{

o N O A W

10

11
12
13

15
16
17
18
19

21

float len;
float width;
public:
Rectangle () {
cout << "Rectangle default Constructor\n";
len = width =1;
// sidesNum = 4; //error, sidesNum is
inaccessible
}
Rectangle (float 1, float w) :Shape (4) {
cout << "Rectangle Constructor\n";
len = 1;
width = w;

int getArea () {
cout << "Rectangle getArealn'";
return len*width;

}

~Rectangle () {

cout << "Rectangle destructor\n";
}

Isfahan University of Technology 14

Inheritance Relationship Inheritance, How?

Introducing Protected Access Specifier

@ A base class's public members are accessible anywhere that
the program has a handle to an object of that base class or to
an object of one of that base class's derived classes.

@ A base class's private members are accessible only within the
base class or from its friends.

@ A base class's protected members can be accessed by
members and friends of that base class and by members and
friends of any classes derived from that base class.

Isfahan University of Technology 15

Inheritance Relationship Inheritance, How?

Shape with protected data member

lclass Shape{

2 protected:

3 const int sidesNum;

4 public:

5 Shape () : sidesNum (0) {

6 cout << "Shape default Constructor\n";
7 }

8 Shape (int s) :sidesNum(s) {

9 cout << "Shape Constructor\n'";
10 }

1 int getSidesNum () {

12 return sidesNum;

13 }

14 float getArea () {

15 cout << "Shape getArea () \n";
16 return O0;

17 }

18 ~Shape () {

19 cout << "Shape destructor\n'";
20 }

21} ;

Isfahan University of Technology 16

Inheritance Relationship Inheritance, How?

Notes on protected

Using protected data members creates two serious problems.

@ The derived-class object does not have to use a member
function to set the value of the base class's protected data
member. An invalid value can easily be assigned to the
protected data member, thus leaving the object in an
inconsistent state

@ Derived classes should depend only on the base-class services
(i.e., non- private member functions) and not on the base-class
implementation. With protected data members in the base
class, if the base-class implementation changes, we may need
to modify all derived classes of that base class.

Isfahan University of Technology 17

Inheritance Relationship Inheritance, How?

Inherited Members

Derived class inherits all the members of base class, except for the
constructor—each class provides its own constructors that are
specific to the class. (Destructors, too, are not inherited.)

Isfahan University of Technology 18

Inheritance Relationship Constructors and Destructors

Constructors and Destructors in Derived Classes

@ \When an object of a derived class is instantiated, the base
class's constructor is called immediately to initialize the
base-class data members in the derived-class object, then the
derived-class constructor initializes the additional derived-class
data members.

@ \When a derived-class object is destroyed, the destructors are
called in the reverse order of the constructors—first the
derived-class destructor is called, then the base-class
destructor is called.

Isfahan University of Technology 19

Inheritance Relationship Constructors and Destructors

Constructors and Destructors in Derived Classes

@ For each derived class, C++ attempts to invoke base class's
default constructor implicitly

@ If there is not a default constructor in the base class, we must
explicitly call one of the constructors of the base class in
member initializer list.

Isfahan University of Technology 20

Inheritance Relationship Constructors and Destructors

Base Class with a Default Constructor

Shape () : sidesNum (0) {

2 cout << "Shape default Constructor\n";

3 }

1 Rectangle () {

2 cout << "Rectangle default Constructor\n";
3 len = width =1;

4 }

1 int main () {

2 Rectangle rl;

3 cout << "rl area: \n'"<< rl.getArea () <<endl;

IU/T / ./Shape
Shape default Constructor
Rectangle default Constructor
rl area:
Rectangle getArea
1

Rectangle destructor
Shape destructor

Isfahan University of Technology

Constructors and Destructors

Inheritance Relationship

Base Class with a Default Constructor

D A W N

g~ W N =

Shape () : sidesNum (0) {

cout << "Shape default Constructor\n";

}
Shape (int s) :sidesNum (s) {

cout << "Shape Constructor\n";

}

Rectangle (float 1, float w) {

cout << "Rectangle Constructor\n";

len = 1;
width = w;
}

int main () {
Rectangle r2{2,3};
cout << "r2 area: "<< r2.getArea ()

/ ./Shape

Shape default Constructor
Rectangle Constructor

r2 area: Rectangle getArea
6

Rectangle destructor
Shape destructor

<<endl;

Isfahan University of Technology

22

Inheritance Relationship Constructors and Destructors

Base Class without a Default Constructor

Shape (int s) :sidesNum (s) {

2 cout << "Shape Constructor\n";

3 }

1 //error, no default constructor for shape
2 Rectangle () {

3 cout << "Rectangle default Constructor\n";
4 len = width =1;

5 }

6 //error, no default constructor for shape
7 Rectangle (float 1, float w) {

8 cout << "Rectangle Constructor\n";

9 len = 1;

10 width = w;

1 }

Shaped.cpp: In constructor 'Rectangle::Rectangle()’:
Shape4.cpp:30:20: error: no matching function for call to ‘Shape::Shape()”
30 | Rectangle(){

|
Shape4.cpp:10:9: note: candidate: ‘Shape::Shape(int)’
10 Shape (int s):sidesNum(s){

Isfahan University of Technology 23

Inheritance Relationship Constructors and Destructors

Explicitly Calling a Constructor in Member-initializer list

Shape (int s) :sidesNum(s) {

2 cout << "Shape Constructor\n'";
}
1 Rectangle () : Shape (4) {
2 cout << "Rectangle default Constructor\n";
3 len = width =1;
4 }

6 Rectangle (float 1, float w) :Shape (4) {
7 cout << "Rectangle Constructor\n";
8 len = 1;

9 width = w;

./Shape

/Doc/IU/Te/
Shape Constructor
Rectangle Constructor

r2 area: Rectangle getArea
6

Rectangle destructor

Shape destructor

Isfahan University of Technology 24

Inheritance Relationship Overriding Methods of Base Class

Overriding

@ If the derived class inherit a method from the base class, calling
that method for the objects of derived class, results in
executing the base class method

@ We can redefine a method of base class in a derived class
(overriding). In this situation, calling that method for the objects
of derived class, results in executing the derived class method

25

Isfahan University of Technology

Inheritance Relationship Overriding Methods of Base Class

Derived Class with overriden method

AW N

AW N =

-

float Shape::getArea () {
cout << "Shape getArea () \n'";
return 0;

int Rectangle::getArea () {

cout << "Rectangle getArea\n";

return len*width;

Rectangle r2{2,3};
cout << "r2 area: "<< r2.getArea ()

./Shape

/ IU/

Shape Constructor
Rectangle Constructor

r2 area: Rectangle getArea
6

Rectangle destructor

Shape destructor

<<endl;

Isfahan University of Technology

26

Inheritance Relationship Overriding Methods of Base Class

Derived Class with Inherited Method of Base Class

AW N =

AW N

-

float Shape::getArea () {
cout << "Shape getArea ()\n";
return 0;

}

// float Rectangle::getArea () {

// cout << "Rectangle getAreal\n';

// return len*width;

// 0}

Rectangle r2{2,3};
cout << "r2 area: "<< r2.getArea () <<endl;

/Doc/IU/
Shape Constructor
Rectangle Constructor

r2 area: Shape getArea()
0

Rectangle destructor
Shape destructor

./Shape

Isfahan University of Technology 27

Inheritance Relationship Overriding Methods of Base Class

Calling a Base Class Method in Derived Class

We can call base class methods explicitly in derived class, even if
they are overridden in the derived class.

lclass Box: public Rectangle{

2 float height;

3 public:

4 double getVolume () {

5 cout << "Box getVolume () \n";

6 return height * Rectangle::getArea () ;
7 }

8 float getArea () {

9 cout << "Box getArea () \n'";

10 return 2 * (Rectangle::getArea () +
1 height * getWidth () +

12 height * getLen ()) ;

13 }

Isfahan University of Technology

28

Inheritance Relationship Overriding Methods of Base Class

Calling a Base Class Method in Derived Class

-

int main () {

2 Box b{10,20,30};

3 cout << fixed << setprecision (2) << b.getArea () <<
endl;

4 }

/Doc/IU/ ./Shape
Shape Constructor
Rectangle Constructor
Box Constructor

Box getArea()
Rectangle getArea()
2200.00

Box Destructor
Rectangle destructor
Shape destructor

Please pay attention to the hierarchical inheritanc too in this
example!

Isfahan University of Technology

29

Inheritance Relationship Other Notes Inheriting Constructors

C++11 allows you to specify that a derived class should inherit a base
class's constructors.

@ To do so, explicitly include a using declaration of the form using
BaseClass::BaseClass;

lclass Rectangle: public Shape/{

2 //making all the constructors of Shape inherited in the
Rectangle
3 using Shape::Shape;

Isfahan University of Technology 30

Inheritance Relationship Other Notes Inheriting Constructors

Inheriting Constructors

1 public:

2 Rectangle () : Shape (4) {

3 cout << "Rectangle default Constructor\n";
4 len = width =1;

5 }

7 Rectangle (float 1, float w):Shape (4) {

8 cout << "Rectangle Constructor\n";

9 len = 1;

10 width = w;

31

Isfahan University of Technology

Inheritance Relationship Other Notes

Inheriting Constructors

Inheriting Constructors

int main () {
cout << "creating rl:\n";

Rectangle rl(2); //creating rl with the Shape
constructor

cout << "creating r2:\n";

Rectangle r2; //creating r2 with the Rectangle
constructor, because default constructor is overriden
in the Rectangle

cout << "\n'";

U/T
creating rl:
Shape Constructor

creating r2:

Shape Constructor

Rectangle default Constructor

./Shape

Rectangle destructor
Shape destructor
Rectangle destructor
Shape destructor

Isfahan University of Technology 32

Inheritance Relationship

Multiple Inheritance

Other Notes

Multiple Inheritance

Isfahan University of Technology

33

Inheritance Relationship Other Notes Multiple Inheritance

Multiple Inheritance Example (Employee)

lclass Employee{

2 static long idGen;

3 protected:

4 long id;

5 long salary;

6 public:

7 Employee (long sal):salary (sal) {

8 id = idGen++;

9 cout << "Employee Constructor\n";
10 }

1 ~Employee () {

12 cout << "Employee Destructor\n";
13 }

14 void print () {

15 cout << "Employee id: "<< id <<endl;
16 }

17}

18long Employee::idGen = 1;

Isfahan University of Technology

34

nce Relationship Other Notes Multiple Inheritance

Multiple Inheritance Example (Person)

lclass Person{

2 protected:

3 string name;

4 int age;

5 public:

6 Person(string s, int a):name (s), age(a) {
7 cout << "Person Constructor\n";

8 }

9 ~Person () {

10 cout << "Person Destructor\n'";

11 }

12 void print () {

13 cout << "Person name: "<< name<< endl;
14 }

151} ;

Isfahan University of Technology

Inheritance Relationship Other Notes Multiple Inheritance

Multiple Inheritance Example (Manager)

lclass Manager: public Person, public Employee

2 public:

3 Manager (string name, int age, long salary) :Person (
name, age), Employee (salary) {

4 cout << "Manager Constructor\n";

5 }

6 ~Manager () {

7 cout << "Manager Destructor\n";

8

9

36

Isfahan University of Technology

Other Notes

Ambiguity in Calling Member Functions

1int main () {

Multiple Inheritance

2 Manager ml ("Ali", 25, 30000) ;

3 //ml.print (); //error, Manager::print" is ambiguous
4 ((Employee)ml) .print (); //resolving the ambiguous

5 ml.Person::print (); //resolving the ambiguous

6}

/ 10/ \
Person Constructor
Employee Constructor
Manager Constructor
Employee id: 1
Employee Destructor
Person name: Ali
Manager Destructor
Employee Destructor
Person Destructor

./Employee

Isfahan University of Technology

37

Other Notes

Type of Inheritance

public, protected and private Inheritance

When deriving a class from a base class, the base class may be
inherited through public, protected or private inheritance.

@ We normally use public inheritance.
@ Use of protected inheritance is rare.

Base-class
member-

access

specifier

public

protected

private

public
inheritance

public in derived class.

Can be accessed directly
by member functions,
friend functions and
nonmember functions.

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class

Can be accessed by member
functions and friend
functions through pub1ic
or protected member
functions of the base class

Type of inheritance

protected
inheritance

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

protected in derived class.

Can be accessed directly
by member functions and
friend functions.

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

private
inheritance

private in derived class.

Can be accessed directly
by member functions and
friend functions.

private in derived class.

Can be accessed directly
by member functions and
Friend functions.

Hidden in derived class

Can be accessed by member
functions and friend
functions through public
or protected member
functions of the base class.

Isfahan University of Technology

38

	Inheritance
	Motivation
	Concepts
	Inheritance, How?
	Constructors and Destructors
	Overriding Methods of Base Class
	Other Notes

