
Advanced Programming
Inheritance Relationship

Zeinab Zali

References: (1) "C++ How to program" Deitel&Deitel, (2) "A Tour of C++" Bjarne Stroustrup,
(3) Other useful learning pages such as geeksforgeeks and tutorialpoints

ECE Department, Isfahan University of Technology

Isfahan University of Technology 1

Inheritance Relationship Motivation

Lions are cats

Isfahan University of Technology 2

Inheritance Relationship Motivation

Inheritance and Evolution

Isfahan University of Technology 3

Inheritance Relationship Motivation

Inheritance in Objects

Isfahan University of Technology 4

Inheritance Relationship Motivation

Inheritance in Objects

Isfahan University of Technology 5

Inheritance Relationship Motivation

Inheritance in Objects

Isfahan University of Technology 6

Inheritance Relationship Motivation

Class Hierarchies

Isfahan University of Technology 7

Inheritance Relationship Motivation

Without using Inheritance

Isfahan University of Technology 8

Inheritance Relationship Motivation

Without using Inheritance

Most of the codes for these classes are similar.

Isfahan University of Technology 9

Inheritance Relationship Concepts

Base and Drived Classes

Inheritance enables you to create a class that absorbs an existing
class’s capabilities, then customizes or enhances them.

The existing class is called the base class (super class), and the
new class is called the derived class (sub class).

A derived class represents a more specialized group of objects.

Isfahan University of Technology 10

Inheritance Relationship Concepts

is-a relationship

With public inheritance, every object of a derived class is also
an object of that derived class’s base class. However,
base-class objects are not objects of their derived classes.

For example, if we have Vehicle as a base class and Car as a
derived class, then all Cars are Vehicles, but not all Vehicles are
Cars—for example, a Vehicle could also be a Truck or a Boat.

Isfahan University of Technology 11

Inheritance Relationship Concepts

is-a relationship

The is-a relationship represents inheritance. In an is-a
relationship, an object of a derived class also can be treated as
an object of its base class—for example, a Car is a Vehicle, so
any attributes and behaviors of a Vehicle are also attributes and
behaviors of a Car.

By contrast, the has-a relationship represents composition. In a
has-a relationship, an object contains one or more objects of
other classes as members. For example, a Car has many
components—it has a steering wheel, has a brake pedal, has a
transmission

Isfahan University of Technology 12

Inheritance Relationship Inheritance, How?

Base Class: Shape

1 class Shape {
2 const int sidesNum ;
3 public :
4 Shape (): sidesNum (4) {
5 cout << " Shape default Constructor \n";
6 }
7 Shape (int s): sidesNum (s){
8 cout << " Shape Constructor \n";
9 }
10 int getSidesNum (){
11 return sidesNum ;
12 }
13 int getArea (){
14 cout << " Shape getArea ()\n";
15 return 1;
16 }
17 ~ Shape (){
18 cout << " Shape destructor \n";
19 }
20 };

Isfahan University of Technology 13

Inheritance Relationship Inheritance, How?

Derived Class: Rectangle

1 class Rectangle : public Shape {
2 float len ;
3 float width ;
4 public :
5 Rectangle (){
6 cout << " Rectangle default Constructor \n";
7 len = width =1;
8 // sidesNum = 4; // error , sidesNum is

inaccessible
9 }
10 Rectangle (float l, float w): Shape (4) {
11 cout << " Rectangle Constructor \n";
12 len = l;
13 width = w;
14 }
15 int getArea (){
16 cout << " Rectangle getArea \n";
17 return len * width ;
18 }
19 ~ Rectangle (){
20 cout << " Rectangle destructor \n";
21 }

Isfahan University of Technology 14

Inheritance Relationship Inheritance, How?

Introducing Protected Access Specifier

A base class’s publicmembers are accessible anywhere that
the program has a handle to an object of that base class or to
an object of one of that base class’s derived classes.

A base class’s privatemembers are accessible only within the
base class or from its friends.

A base class’s protectedmembers can be accessed by
members and friends of that base class and by members and
friends of any classes derived from that base class.

Isfahan University of Technology 15

Inheritance Relationship Inheritance, How?

Shape with protected data member

1 class Shape {
2 protected :
3 const int sidesNum ;
4 public :
5 Shape (): sidesNum (0) {
6 cout << " Shape default Constructor \n";
7 }
8 Shape (int s): sidesNum (s){
9 cout << " Shape Constructor \n";
10 }
11 int getSidesNum (){
12 return sidesNum ;
13 }
14 float getArea (){
15 cout << " Shape getArea ()\n";
16 return 0;
17 }
18 ~ Shape (){
19 cout << " Shape destructor \n";
20 }
21 };

Isfahan University of Technology 16

Inheritance Relationship Inheritance, How?

Notes on protected

Using protected data members creates two serious problems.

The derived-class object does not have to use a member
function to set the value of the base class’s protected data
member. An invalid value can easily be assigned to the
protected data member, thus leaving the object in an
inconsistent state

Derived classes should depend only on the base-class services
(i.e., non- private member functions) and not on the base-class
implementation. With protected data members in the base
class, if the base-class implementation changes, we may need
to modify all derived classes of that base class.

Isfahan University of Technology 17

Inheritance Relationship Inheritance, How?

Inherited Members

Derived class inherits all the members of base class, except for the
constructor—each class provides its own constructors that are
specific to the class. (Destructors, too, are not inherited.)

Isfahan University of Technology 18

Inheritance Relationship Constructors and Destructors

Constructors and Destructors in Derived Classes

When an object of a derived class is instantiated, the base
class’s constructor is called immediately to initialize the
base-class data members in the derived-class object, then the
derived-class constructor initializes the additional derived-class
data members.

When a derived-class object is destroyed, the destructors are
called in the reverse order of the constructors—first the
derived-class destructor is called, then the base-class
destructor is called.

Isfahan University of Technology 19

Inheritance Relationship Constructors and Destructors

Constructors and Destructors in Derived Classes

For each derived class, C++ attempts to invoke base class’s
default constructor implicitly

If there is not a default constructor in the base class, we must
explicitly call one of the constructors of the base class in
member initializer list.

Isfahan University of Technology 20

Inheritance Relationship Constructors and Destructors

Base Class with a Default Constructor

1 Shape (): sidesNum (0) {
2 cout << " Shape default Constructor \n";
3 }

1 Rectangle (){
2 cout << " Rectangle default Constructor \n";
3 len = width =1;
4 }

1 int main (){
2 Rectangle r1;
3 cout << "r1 area : \n" << r1. getArea () << endl ;

Isfahan University of Technology 21

Inheritance Relationship Constructors and Destructors

Base Class with a Default Constructor

1 Shape (): sidesNum (0) {
2 cout << " Shape default Constructor \n";
3 }
4 Shape (int s): sidesNum (s){
5 cout << " Shape Constructor \n";
6 }

1 Rectangle (float l, float w){
2 cout << " Rectangle Constructor \n";
3 len = l;
4 width = w;
5 }

1 int main (){
2 Rectangle r2 {2 ,3};
3 cout << "r2 area : " << r2. getArea () << endl ;

Isfahan University of Technology 22

Inheritance Relationship Constructors and Destructors

Base Class without a Default Constructor

1 Shape (int s): sidesNum (s){
2 cout << " Shape Constructor \n";
3 }

1 // error , no default constructor for shape
2 Rectangle (){
3 cout << " Rectangle default Constructor \n";
4 len = width =1;
5 }
6 // error , no default constructor for shape
7 Rectangle (float l, float w){
8 cout << " Rectangle Constructor \n";
9 len = l;
10 width = w;
11 }

Isfahan University of Technology 23

Inheritance Relationship Constructors and Destructors

Explicitly Calling a Constructor in Member-initializer list

1 Shape (int s): sidesNum (s){
2 cout << " Shape Constructor \n";
3 }

1 Rectangle (): Shape (4) {
2 cout << " Rectangle default Constructor \n";
3 len = width =1;
4 }

6 Rectangle (float l, float w): Shape (4) {
7 cout << " Rectangle Constructor \n";
8 len = l;
9 width = w;
10 }

Isfahan University of Technology 24

Inheritance Relationship Overriding Methods of Base Class

Overriding

If the derived class inherit a method from the base class, calling
that method for the objects of derived class, results in
executing the base class method

We can redefine a method of base class in a derived class
(overriding). In this situation, calling that method for the objects
of derived class, results in executing the derived class method

Isfahan University of Technology 25

Inheritance Relationship Overriding Methods of Base Class

Derived Class with overriden method

1 float Shape :: getArea (){
2 cout << " Shape getArea ()\n";
3 return 0;
4 }

1 int Rectangle :: getArea (){
2 cout << " Rectangle getArea \n";
3 return len * width ;
4 }

1 Rectangle r2 {2 ,3};
2 cout << "r2 area : " << r2. getArea () << endl ;

Isfahan University of Technology 26

Inheritance Relationship Overriding Methods of Base Class

Derived Class with Inherited Method of Base Class

1 float Shape :: getArea (){
2 cout << " Shape getArea ()\n";
3 return 0;
4 }

1 // float Rectangle :: getArea (){
2 // cout << " Rectangle getArea \n";
3 // return len * width ;
4 // }

1 Rectangle r2 {2 ,3};
2 cout << "r2 area : " << r2. getArea () << endl ;

Isfahan University of Technology 27

Inheritance Relationship Overriding Methods of Base Class

Calling a Base Class Method in Derived Class

We can call base class methods explicitly in derived class, even if
they are overridden in the derived class.

1 class Box : public Rectangle {
2 float height ;
3 public :
4 double getVolume (){
5 cout << " Box getVolume ()\n";
6 return height * Rectangle :: getArea ();
7 }
8 float getArea (){
9 cout << " Box getArea ()\n";
10 return 2 * (Rectangle :: getArea () +
11 height * getWidth () +
12 height * getLen ());
13 }

Isfahan University of Technology 28

Inheritance Relationship Overriding Methods of Base Class

Calling a Base Class Method in Derived Class

1 int main (){
2 Box b {10 ,20 ,30};
3 cout << fixed << setprecision (2) << b. getArea () <<

endl ;
4 }

Please pay attention to the hierarchical inheritanc too in this
example!

Isfahan University of Technology 29

Inheritance Relationship Other Notes Inheriting Constructors

C++11 allows you to specify that a derived class should inherit a base
class’s constructors.

To do so, explicitly include a using declaration of the form using
BaseClass::BaseClass;

1 class Rectangle : public Shape {
2 // making all the constructors of Shape inherited in the

Rectangle
3 using Shape :: Shape ;

Isfahan University of Technology 30

Inheritance Relationship Other Notes Inheriting Constructors

Inheriting Constructors

1 public :
2 Rectangle (): Shape (4) {
3 cout << " Rectangle default Constructor \n";
4 len = width =1;
5 }

7 Rectangle (float l, float w): Shape (4) {
8 cout << " Rectangle Constructor \n";
9 len = l;
10 width = w;
11 }

Isfahan University of Technology 31

Inheritance Relationship Other Notes Inheriting Constructors

Inheriting Constructors

1 int main (){
2 cout << " creating r1 :\n";
3 Rectangle r1 (2) ; // creating r1 with the Shape

constructor
4 cout << " creating r2 :\n";
5 Rectangle r2; // creating r2 with the Rectangle

constructor , because default constructor is overriden
in the Rectangle

6 cout << "\n";
7 }

Isfahan University of Technology 32

Inheritance Relationship Other Notes Multiple Inheritance

Multiple Inheritance

Isfahan University of Technology 33

Inheritance Relationship Other Notes Multiple Inheritance

Multiple Inheritance Example (Employee)

1 class Employee {
2 static long idGen ;
3 protected :
4 long id;
5 long salary ;
6 public :
7 Employee (long sal): salary (sal){
8 id = idGen ++;
9 cout << " Employee Constructor \n";
10 }
11 ~ Employee (){
12 cout << " Employee Destructor \n";
13 }
14 void print (){
15 cout << " Employee id: " << id << endl ;
16 }
17 };
18 long Employee :: idGen = 1;

Isfahan University of Technology 34

Inheritance Relationship Other Notes Multiple Inheritance

Multiple Inheritance Example (Person)

1 class Person {
2 protected :
3 string name ;
4 int age ;
5 public :
6 Person (string s, int a): name (s), age (a){
7 cout << " Person Constructor \n";
8 }
9 ~ Person (){
10 cout << " Person Destructor \n";
11 }
12 void print (){
13 cout << " Person name : " << name << endl ;
14 }
15 };

Isfahan University of Technology 35

Inheritance Relationship Other Notes Multiple Inheritance

Multiple Inheritance Example (Manager)

1 class Manager : public Person , public Employee {
2 public :
3 Manager (string name , int age , long salary): Person (

name , age), Employee (salary){
4 cout << " Manager Constructor \n";
5 }
6 ~ Manager (){
7 cout << " Manager Destructor \n";
8 }
9 };

Isfahan University of Technology 36

Inheritance Relationship Other Notes Multiple Inheritance

Ambiguity in Calling Member Functions

1 int main (){
2 Manager m1(" Ali ", 25 , 30000) ;
3 // m1. print (); // error , Manager :: print " is ambiguous
4 ((Employee)m1). print (); // resolving the ambiguous
5 m1. Person :: print (); // resolving the ambiguous
6 }

Isfahan University of Technology 37

Inheritance Relationship Other Notes Type of Inheritance

public, protected and private Inheritance

When deriving a class from a base class, the base class may be
inherited through public, protected or private inheritance.

We normally use public inheritance.
Use of protected inheritance is rare.

Isfahan University of Technology 38

	Inheritance
	Motivation
	Concepts
	Inheritance, How?
	Constructors and Destructors
	Overriding Methods of Base Class
	Other Notes

