
Advanced Programming
Implementing Your Own Operators

Zeinab Zali

References: (1) "C++ How to program" Deitel&Deitel, (2) "A Tour of C++" Bjarne Stroustrup,
(3) Other useful learning pages such as geeksforgeeks and tutorialpoints

ECE Department, Isfahan University of Technology

Isfahan University of Technology 1

Operator Overloading Motivation Case study: Array class

Built-in Arrays in C++

built in arrays in C++ have some limitations, so we want to define a
new Array class.

C++ does not check whether subscripts fall outside the range of
the array.

Built-in arrays of size n must number their elements 0,..., n – 1;
alternate subscript ranges are not allowed.

An entire built-in array cannot be input or output at once.

Isfahan University of Technology 2

Operator Overloading Motivation Case study: Array class

Built-in Arrays in C++

Two built-in arrays cannot be meaningfully compared with
equality or relational operators

When a built-in array is passed to a general-purpose function
designed to handle arrays of any size, the array’s size must be
passed as an additional argument.

One built-in array cannot be assigned to another with the
assignment operator(s).

Isfahan University of Technology 3

Operator Overloading Motivation Case study: Array class

Array Class

1 class Array {
2 private :
3 size_t size ; // pointer - based array size
4 int * ptr ; // pointer to first element of pointer -

based array

6 public :
7 explicit Array (int = 10) ; // default constructor
8 Array (const Array &); // copy constructor
9 ~ Array (); // destructor
10 size_t getSize () const ; // return size
11 };

Isfahan University of Technology 4

Operator Overloading Motivation Case study: Array class

Using the Array Class

Assume we want to use the array class with some operators
1 # include " Array1 .h"
2 using namespace std ;
3 int main () {
4 Array integers1 {7}; // seven - element Array
5 Array integers2 ; // 10 - element Array by default

6 // input and print integers1 and integers2
7 cout << "\ nEnter 17 integers :" << endl ;
8 cin >> integers1 >> integers2 ;
9 cout << "\ nThe Arrays contain :\n"
10 << " integers1 : " << integers1
11 << " integers2 : " << integers2 ;

Isfahan University of Technology 5

Operator Overloading Motivation Case study: Array class

Using the Array Class

12 // use inequality (!=) operator
13 cout << "\ nEvaluating : integers1 != integers2 " << endl ;
14 if (integers1 != integers2) {
15 cout << " integers1 and integers2 are not equal " <<

endl ;
16 }
17 // create Array integers3 using integers1 as an
18 // initializer ; print size and contents
19 Array integers3 { integers1 }; // invokes copy constructor
20 cout << "\ nSize of Array integers3 is " << integers3 .

getSize ()
21 << "\ nArray after initialization : " << integers3 ;

22 // use assignment (=) operator
23 cout << "\ nAssigning integers2 to integers1 :" << endl ;
24 integers1 = integers2 ; // note target Array is smaller
25 cout << " integers1 : " << integers1 << " integers2 : " <<

integers2 ;

Isfahan University of Technology 6

Operator Overloading Motivation Case study: Array class

Using the Array Class

26 // use equality (==) operator
27 cout << "\ nEvaluating : integers1 == integers2 " << endl ;
28 if (integers1 == integers2) {
29 cout << " integers1 and integers2 are equal " << endl

;
30 }

31 // use subscript operator to create rvalue
32 cout << "\ nintegers1 [5] is " << integers1 [5] ;

33 // use subscript operator to create lvalue
34 cout << "\n\ nAssigning 1000 to integers1 [5] " << endl ;
35 integers1 [5] = 1000;
36 cout << " integers1 : " << integers1 ;

Isfahan University of Technology 7

Operator Overloading Motivation Case study: Array class

Using the Array Class

37 // attempt to use out -of - range subscript
38 try {
39 cout << "\ nAttempt to assign 1000 to integers1 [15] "

<< endl ;
40 integers1 [15] = 1000; // ERROR : subscript out of

range
41 }
42 catch (out_of_range & ex) {
43 cout << "An exception occurred : " << ex. what () <<

endl ;
44 }

Isfahan University of Technology 8

Operator Overloading Motivation Case study: Array class

Operators of Array Class

As you see, we used some operators on objects of Array class:

« : stream insertion (print)

» : stream input (read)

= : assignment

!= : inequality

== : equality

[] : rvalue subscript

[] : lvalue subscript

Isfahan University of Technology 9

Operator Overloading Motivation Case study: Array class

Operators of Array Class

Who specifies what operators can be used on objects of array
class?

Who specifies how operators operates on objects of array
class?

Isfahan University of Technology 10

Operator Overloading Motivation Case study: Array class

Case Study: String Class

For a customized String class, we may use some operators:

«: inserting an string on the output stream

»: reading an string from the input stream

+ : concatenating two strings

< : comparing two strings (if the first one lower than second one)

many other operators

Isfahan University of Technology 11

Operator Overloading Motivation Case study: Array class

Case Study: List Class

For a Linked List class, we may use some operators:

«: inserting all the elements of a list on the output stream

+ : concatenating two lists

What other operators do you propose for the List class?

Isfahan University of Technology 12

Operator Overloading Concepts

Operator Overloading, What?

Operator Overloading is the process of enabling C++’s operators (+,
-, *, +=, !=, ...) to work with objects of our new defined classes

One Operator may operate differently on different classes of
objects.
You can overload most operators to be used with class
objects—the compiler generates the appropriate code based
on the types of the operands.

Ex: + on two integers performs addition of them to get their sum,
+ on two strings performs concatenation on them.

Isfahan University of Technology 13

Operator Overloading Concepts

Operator Overloading, How?

To use an operator on an object of a class, you must define
overloaded operator functions for that class.

An operator is overloaded by writing a (1) non-static member
function definition or (2) non-member function definition
The function name starts with the keyword operator followed
by the symbol for the operator being overloaded.

For example, the function name operator+ would be used to
overload the addition operator (+) for use with objects of a
particular user-defined type.

Isfahan University of Technology 14

Operator Overloading Concepts

C++ Default Operators

There are three default operators in C++ for objects of each new
defined class, however you can also overload them.

The assignment operator (=)may be used with most classes
to perform memberwise assignment of the data
members—each data member is assigned from the
assignment’s “source” object (on the right) to the “target” object
(on the left).

Memberwise assignment is dangerous for classes with pointer
member, so you must explicitly overload the assignment
operator for such classes.

The address (&) operator returns a pointer to the object; this
operator also can be overloaded.

The comma operator evaluates the expression to its left then
the expression to its right, and returns the value of the latter
expression.

Isfahan University of Technology 15

Operator Overloading Overloading Binary Operators

Binary Overloaded Operators as Member Functions

Overloaded operator functions for binary operators can be member
functions only when the left operand is an object of the class in
which the function is a member, for examples

operator+ for adddition of two strings that returns a new string
as the result

operator== for comparing two Array class that returns a bool
value as the result

operator

Isfahan University of Technology 16

Operator Overloading Overloading Binary Operators

Equality Operator for Array Class (Member Function)

When overloading binary operator == as a non-static member
function, if y and z are Array objects, then y == z is treated by the
compiler as if y.operator==(z) had been written, so invoking the
operator == member function with one argument.

1 // determine if two Arrays are equal and
2 // return true , otherwise return false
3 bool Array :: operator ==(const Array & right) const {
4 // arrays of different number of elements
5 if (size != right . size) {
6 return false ;
7 }
8 for (size_t i {0}; i < size ; ++i) {
9 if (ptr [i] != right . ptr [i]) {
10 // Array contents are not equal
11 return false ;
12 }
13 }
14 return true ; // Arrays are equal
15 }

Isfahan University of Technology 17

Operator Overloading Overloading Binary Operators

Binary Overloaded Operators as Non-Member Functions

As a non-member function, a binary operator must take two
arguments—one of which must be an object (or a reference to
an object) of the class that the overloaded operator is
associated with.

If y and z are Array objects or references to Array objects, then y
== z is treated as if the call operator==(y, z) had been written in
the program, invoking function operator== with two
argumanents.

Isfahan University of Technology 18

Operator Overloading Overloading Binary Operators

Equality Operator for Array Class (Non-member
Function)

1 // determine if two Arrays are equal and
2 // return true , otherwise return false
3 bool operator ==(const Array & left , const Array & right){
4 // arrays of different number of elements
5 if (left . size != right . size) {
6 return false ;
7 }
8 for (size_t i {0}; i < left . size ; ++i) {
9 if (left . ptr [i] != right . ptr [i]) {
10 // Array contents are not equal
11 return false ;
12 }
13 }
14 return true ; // Arrays are equal
15 }

Isfahan University of Technology 19

Operator Overloading Overloading Binary Operators

Equality Operator for Array Class (Non-member
Function)

Encapsulation Violation! How the non-member function operator==
could access private members of Array class? such as size or ptr?

Isfahan University of Technology 20

Operator Overloading Overloading Binary Operators

Freind Function and Class

A friend function/class of a class is a non-member function/other
class that has the right to access the public and non-public class
members

Standalone functions, entire classes or member functions of
other classes may be declared to be friends of another class

Friendship is granted, not taken—for class B to be a friend of
class A, class A must explicitly declare that class B is its friend

Isfahan University of Technology 21

Operator Overloading Overloading Binary Operators

Freind Function and Class

To declare a non-member function as a friend of a class, place
the function prototype in the class definition and precede it with
the keyword friend

To declare all member functions of class B as friends of class A,
place a declaration of the form "friend class B;" in the definition
of class A.

The friend declaration(s) can appear anywhere in a class and
are not affected by access specifiers public or private.

Isfahan University of Technology 22

Operator Overloading Overloading Binary Operators

Equality Operator for Array Class (Non-member
Function)

Encapsulation Violation! How the non-member function operator==
could access private members of Array class? such as size or ptr?

We must define the function operator as the friend of Array
class

1 class Array {
2 friend bool operator ==(const Array &, const Array &);

Isfahan University of Technology 23

Operator Overloading Overloading Binary Operators

Binary Stream Insertion and Extraction

Stream Insertion(«) and Extraction operators(») operate on each
object of a new defined class as right operand and an istream or
ostream objects as left operand.

So, we must overload these operators as non-member
functions.

1 class Array {
2 friend std :: ostream & operator < <(std :: ostream &, const

Array &);
3 friend std :: istream & operator > >(std :: istream &, Array &);

Isfahan University of Technology 24

Operator Overloading Overloading Binary Operators

Binary Stream Insertion and Extraction

1 // overloaded input operator for class Array ;
2 // inputs values for entire Array
3 istream & operator > >(istream & input , Array & a) {
4 for (size_t i {0}; i < a. size ; ++i) {
5 input >> a. ptr [i];
6 }
7 return input ; // enables cin >> x >> y;
8 }

9 // overloaded output operator for class Array
10 ostream & operator < <(ostream & output , const Array & a) {
11 // output private ptr - based array
12 for (size_t i {0}; i < a. size ; ++i) {
13 output << a. ptr [i] << " ";
14 }
15 output << endl ;
16 return output ; // enables cout << x << y;
17 }

Isfahan University of Technology 25

Operator Overloading Overloading Unary Operators

Unary Operators as Member Function or Non-member
Function

A unary operator for a class can be overloaded as a non-static
member function with no arguments or as a non-member function
with one argument that must be an object (or a reference to an
object) of the class.

Example: we can overload the increment operator for Array
class to enable incrementing all the elements of an Array
object at once.

Isfahan University of Technology 26

Operator Overloading Overloading Unary Operators

Prefix Operator++: Unary Operator

Prefix operator++ for an Array object can be overloaded in two ways:

if operator++ is overloaded as member function, ++a is invoked
as a.operator++()

1 Array & Array :: operator ++() {
2 for (int i =0;i< size ; i ++)
3 ptr [i]++;
4 return * this ;
5 }

if operator++ is overloaded as non-member function, ++a is
invoked as operator++(a)

1 Array & operator ++(Array & a){
2 for (int i =0;i<a. size ; i ++)
3 a. ptr [i]++;
4 return a;
5 }

Isfahan University of Technology 27

Operator Overloading Overloading Unary Operators

Postfix Operator++: Binary Operator

Overloading the postfix increment operator presents a challenge,
because the compiler must be able to distinguish between the
signatures of the overloaded prefix and postfix increment operator
functions.

Solution: a dummy value is used that enables the compiler to
distinguish between the prefix and postfix increment operator
functions

Isfahan University of Technology 28

Operator Overloading Overloading Unary Operators

Postfix Operator++: Binary Operator

if operator++ is overloaded as member function, when the
compiler sees the postincrementing expression a++ , it
generates the member-function call a.operator++(0) (Array
operator++(int))

if operator++ is overloaded as non-member function, when the
compiler sees the expression a++ ,the compiler generates the
function call operator++(a,0) (Array operator++(Array&,int)

Question: Why we declare return type of prefix++ as reference, but
the return type of postfix++ as non reference?
Exercise: Implement the overloaded postfix++ for Array class?

Isfahan University of Technology 29

Operator Overloading Conversion Between Types

Conversion Operators

A conversion operator (also called a cast operator) can be used to
convert an object of one class to another type

It must be a non-static member function.

The function prototype textMyClass::operator string() const;
declares an overloaded cast operator function for converting an
object of class MyClass into a temporary string object

It is called when compiler sees static_cast conversion

Isfahan University of Technology 30

Operator Overloading Conversion Between Types

Static Cast

static_cast is a compile-time cast and is the simplest type of
cast that can be used

It can be used explicitly.
1 string s1 = static_cast < string >(integers1);
2 string s2 = (string) integers1 ;
3 string s3 = string (integers1);

It also does implicit conversions between types.
1 string s4 = integers1 ;

Isfahan University of Technology 31

Operator Overloading Conversion Between Types

explicit Constructors

In some situations, implicit conversions are undesirable or
error-prone
Any constructor that can be called with a single argument and
is not declared explicit can be used by the compiler to perform
an implicit conversion.

The constructor’s argument is converted to an object of the class
in which the constructor is defined.
if this constructor is declared explicit, it could not be misused by
the compiler to perform an implicit conversion
if class A has a constructor with one argument and is not
declared explicit, the compiler assumes the constructor is a
conversion constructor and uses it to convert the argument into
an object of class A.

Isfahan University of Technology 32

Operator Overloading Conversion Between Types

explicit Constructors

content...

Isfahan University of Technology 33

Operator Overloading Additional Notes

Assignment Operator

When the compiler sees the expression integers1 = integers2, the
compiler invokes member function operator= with the call of
assignment operator

Default memberwise assignment assigns each data member of
the object on the right of the assignment individually to the
same data member in the object on the left of the assignment
operator

Isfahan University of Technology 34

Operator Overloading Additional Notes

Assignment Operator for Array Class

1 // overloaded assignment operator ;
2 // const return avoids : (a1 = a2) = a3
3 const Array & Array :: operator =(const Array & right) {
4 if (& right != this) { // avoid self - assignment
5 // for Arrays of different sizes , deallocate

original
6 // left - side Array , then allocate new left - side

Array
7 if (size != right . size) {
8 delete [] ptr ; // release space
9 size = right . size ; // resize this object
10 ptr = new int [size]; // create space for

Array copy
11 }
12 for (size_t i {0}; i < size ; ++i) {
13 ptr [i] = right . ptr [i]; // copy array into

object
14 }
15 }
16 return * this ; // enables x = y = z, for example
17 }

Isfahan University of Technology 35

Operator Overloading Additional Notes

Commutative Operators

Suppose we want to overload a binary operator which operates on
two operands with different class type, for enabling Commutative
property for such an operator, we must overload it both as member
function and non-member function. For example, assume s is an
String and c is a char:

s + c (operator+ is overloaded as the member function of String)

c + s (operator+ is overloaded as non-member function)

Isfahan University of Technology 36

Operator Overloading Additional Notes

Restrictions on Operator Overloading

You cannot change the precedence and associativity of an
operator by overloading.

You cannot change the “arity” of an operator (i.e., the number of
operands an operator takes).

You cannot create new operators—only existing operators can
be overloaded.

You cannot change the meaning of how an operator works on
objects of fundamental types.

Isfahan University of Technology 37

Operator Overloading Additional Notes

Subscript Operator

Exercise: Try to overload subscript operator for Array class, pay
attention that subscription on a const Array object can not be used
as lvalue in any statement.

Isfahan University of Technology 38

	Operator Overloading
	Motivation
	Concepts
	Overloading Binary Operators
	Overloading Unary Operators
	Conversion Between Types
	Additional Notes

