
Advanced Programming

Zeinab Zali

References: (1) "C++ How to program" Deitel&Deitel, (2) "A Tour of C++" Bjarne Stroustrup,
(3) Other useful learning pages such as geeksforgeeks and tutorialpoints

ECE Department, Isfahan University of Technology

Isfahan University of Technology 1



Lets start OO with C++ simple bank-account class

Class Members

We want to define a new type (class), for managing a bank-account
Attributes (data members):

name
balance

Methods or behaviors (member functions)
getBalance: querying the balance
deposit: making a deposit that increases the balance
withdraw: making a withdrawal that decreases the balance

Isfahan University of Technology 2



Lets start OO with C++ simple bank-account class

Class Definition

1 # ifndef ACCOUNT_H
2 # define ACCOUNT_H
3 # include <string >
4 using namespace std ;
5 class Account {
6 public :
7 void setBalance ( long );
8 long getBalance ();
9 void diposit ();
10 void withdraw ();
11 string name ;
12 long balance ;
13 };
14 # endif

Isfahan University of Technology 3



Lets start OO with C++ simple bank-account class

Class Implementation

1 # include " Account .h"
2

3 Account :: Account (){
4

5 }
6

7 long Account :: getBalance (){
8 return balance ;
9 }
10

11 void Account :: setBalance ( long b){
12 balance = b;
13 }

Isfahan University of Technology 4



Lets start OO with C++ simple bank-account class

The new defined class in action

Classes cannot execute by themselves.
We must create objects from a class

1 # include " Account .h"
2 # include <iostream >
3 # include <string >
4 int main (){
5 Account acc1 ;
6 //a pointer to a new allocated Account object :
7 Account * acc2 = new Account ();
8 // an array of 100 new allocated Account objects :
9 Account acc_arr1 [100];
10 Account * acc_arr2 = new Account [100];
11 cout << " Initial acc1 balance : " << acc1 . balance ;
12 acc1 . setBalance (100) ;
13 cout << " New balance of acc1 : " << acc1 . balance ;
14 acc2 -> setBalance (200) ;
15 cout << " New balance of acc2 : " << acc2 -> balance ;
16 acc_arr1 [0]. setBalance (300) ;
17 acc_arr2 [0]. setBalance (300) ;
18 }

Isfahan University of Technology 5



Lets start OO with C++ Encapsulation

Access Speifier private/public

Try below code for the class definition

In This way, name and balance are not accessible from the
created object.

Infact all the data and function members of a class are private,
unless we declare them as public

1 # include <string >
2 using namespace std ;
3 class Account {
4 string name ;
5 long balance ;
6 public :
7 void setBalance ( long );
8 long getBalance ();
9 void diposit ();
10 void withdraw ();
11

12 };

Isfahan University of Technology 6



Lets start OO with C++ Encapsulation

Encapsulation, Why?

Isfahan University of Technology 7



Lets start OO with C++ Encapsulation

Encapsulation, How?

Access specifiers are always followed by a colon ( : ).
Declaration of data members or member functions appear after
access specifier private: to indicate that they are accessible
only to class’s member functions.

This is known as hiding or encapsulation
Data members or member functions listed after access
specifier public are “available to the public.”

They can be used by other functions in the program (such as
main ), and by member functions of other classes (if there are
any).

Isfahan University of Technology 8



Lets start OO with C++ Constructor

Constructor, What?

Each class can define a constructor that specifies custom
initialization for objects of that class

A constructor is a special member function that must have the
same name as the class.

C++ requires a constructor call when each object is created, so
this is the ideal point to initialize an object’s data members

A constructor can have parameters(the corresponding
argument values help initialize the object’s data members)

A constructor does not return anything.

Isfahan University of Technology 9



Lets start OO with C++ Constructor

Constructor, How?

Implementing constructors
1 Account :: Account ( string str , long val ){
2

3 name = str ;
4 balance = val ;
5 }
6 Account :: Account ( long val ){
7 balance = val ;
8 }

Using Constructors to initialize objects
1 Account acc1 (" Arman " ,100) ;
2 Account * acc2 = new Account (200) ;
3 Account acc3 {" Ali " ,200}; // creating an account that

is constructed by Account ( string , long ), it is same as
Account acc3 (" Ali " ,200)

4 int i {100}; // declaring an integer with value of 3

Isfahan University of Technology 10



Lets start OO with C++ Constructor

Default Constructor

In any class that does not explicitly define a constructor, the
compiler provides a default constructor with no parameters

If you define a custom constructor for a class, the compiler will
not create a default constructor for that class

1 // below line causes error : no default constructor
exists for class " Account "C/C++

2 Account acc ;

Isfahan University of Technology 11



Lets start OO with C++ Constructor

Member-Initializer List

A constructor uses a member-initializer list to initialize its data
members with the values of the corresponding parameters.

Member initializers appear between a constructor’s parameter
list and the left brace that begins the constructor’s body

1 Account :: Account ( string str , long val ): name ( str ),
balance ( val ){

2

3 }

The member initializer list executes before the constructor’s
body executes.

Sometimes this way is the only way of initializing some data
members (we see them in future)

Isfahan University of Technology 12



Lets start OO with C++ Destructor

Destructor, What?

A destructor is another type of special member function.

The name of the destructor for a class is the tilde character ( ∼ )
followed by the class name

A destructor may not specify parameters or a return type.

1 Account ::~ Account (){
2 cout << " destructor is called \n";
3 }

Isfahan University of Technology 13



Lets start OO with C++ Destructor

Destructor, How?

A class’s destructor is called implicitly when an object is
destroyed.

This occurs, for example, as an object is destroyed when
program execution leaves the scope in which that object was
instantiated.

Every class has exactly one destructor.

If you do not explicitly define a destructor, the compiler defines
an “empty” destructor.

We’ll build destructors appropriate for classes whose objects
contain dynamically allocated memory

Isfahan University of Technology 14



Lets start OO with C++ this poniter

this Pointer

Every object has access to its own address through a pointer called
this (a C++ keyword)

A common explicit use of the this pointer is to avoid naming
conflicts between a class’s data members and member
function parameters (or other local variables) with the same
name.

1 void Account :: setBalance ( long balance ){
2 this -> balance = balance ;
3 }

Isfahan University of Technology 15



Lets start OO with C++ this poniter

Cascaded Function Calls

Cascaded member function calls is invoking multiple functions
sequentially in the same statement.

Another use of the this pointer is to enable cascaded
member-function calls

1 Account & Account :: withdraw ( long val ){
2 if(val >=0) {
3 balance -= val ;
4 transactions [ transIndx ] = " withdraw " + std

:: to_string ( val );
5 withdrawTrans [ wtransIndx ] = std :: to_string (

val );
6 if ( transIndx ==9)
7 transIndx =0;
8 else
9 transIndx ++;
10 if ( wtransIndx ==9)
11 wtransIndx =0;
12 else
13 wtransIndx ++;
14 }
15 return * this ;
16 }

One such usuall example is using multiple « operators with
cout to output multiple values in a single statement

Isfahan University of Technology 16



Lets start OO with C++ this poniter

Cascaded Function Calls

Cascaded function call:
1 cout << " withdraw 100 and 10 units from acc6 \n";
2 cout << acc6 . withdraw (100) . withdraw (10) . getBalance ()

<< endl ;
3 acc6 . getTransaction () [1] = " intrusion "; // dangerous

! we can change private transactions array if we don
’t declare return pointer value of getTransaction as

const

One such usuall example is using multiple « operators with
cout to output multiple values in a single statement

Isfahan University of Technology 17



Lets start OO with C++ static members

static Data Member

In certain cases, only one copy of a variable should be shared by all
objects of a class. A static data member is used for these and other
reasons

Each object of a class has its own copy of all the data members
of the class, except static ones

A class’s static members exist even when no objects of that
class exist.

To access a public static class member when no objects of the
class exist, simply prefix the class name and the scope
resolution operator ( :: ) to the name of the data member.

Isfahan University of Technology 18



Lets start OO with C++ static members

static Data Member

Defining static data member in class definition:
1 class Account {
2 private :
3 static long count ;
4 static long genID ;

a static data member must be defined and initialized at global
namespace scope, for example in Account.cpp:

1 long Account :: genID = 0;
2 long Account :: count = 0;

Isfahan University of Technology 19



Lets start OO with C++ static members

static Member Function

A static member function is a service of the class, not of a specific
object of the class.

To access a private or protected static class member when no
objects of the class exist, provide a public static member
function

declaring static member function in calss definiction:
1 static long getCount ();
2 static void service ();

Isfahan University of Technology 20



Lets start OO with C++ static members

static Member Function

implementing the static member function
1 long Account :: getCount (){
2 return count ;
3 }
4 void Account :: service (){
5 // cout << id; // error , non static data

member can not be accessed in a static member
function

6 cout << " Current number of objects from Account
is " << count << endl ; // ok

7 }

call the static function by prefixing its name with the class name
and scope resolution operator

1 // cout << " Number of created account : " << Account
:: getCount () << endl ;

2 // Account :: service (); // we can also call acc1 .
service ();

Isfahan University of Technology 21



Lets start OO with C++ const members

const data members

A class may have const data members, which must be initialized by
Member-Initializer List.

declaring in class definition:
1 const long id;

initializing by Member-Initializer List
1 Account :: Account ( long val ):id (++ genID ){
2 if (val >=0)
3 balance = val ;
4 else
5 balance = 0;

Isfahan University of Technology 22



Lets start OO with C++ const members

const member functions

C++ disallows member-function calls for const objects unless the
member functions themselves are also declared const.

1 long getBalance () const ;
2 string getName () const ;

This is true even for get member functions that do not modify
the object.

This is also a key reason that we’ve declared as const all
member functions that do not modify the objects on which
they’re called.

1 // const Account acc5 {" Zahra ", 1000};
2 // // error , we can not call a non const member function

on a const object
3 // // cout << acc5 . diposit (20) << endl ;
4 // cout << acc5 . getBalance (); //ok , getBalance () is a

const function

Isfahan University of Technology 23



Lets start OO with C++ const members

Returning Const value

If we return a pointer of private data in a public member function,
encapsulation is violated.

To demonstrate such situation, we added two pointers to array
of strings in Account class for storing last ten transactions and
last ten withdraw transactions.

private data members:
1 string transactions [10];
2 string * withdrawTrans ;

public member functions
1 string * getTransaction ();
2 string * getWithdrawTrans ();

Isfahan University of Technology 24



Lets start OO with C++ const members

Returning Const value

1 Account acc6 {" Mahsa ", 10000};
2 cout << " withdraw 100 and 10 units from acc6 \n";
3 cout << acc6 . withdraw (100) . withdraw (10) . getBalance () <<

endl ;
4 acc6 . getTransaction () [1] = " intrusion "; // dangerous ! we

can change private transactions array if we don ’t
declare return pointer value of getTransaction as const

5 cout << acc6 . getTransaction () [1] << endl ;

Isfahan University of Technology 25



Lets start OO with C++ copy constructor

Copy Constructor

Copy Constructor is a specialed constructor to create a new copy of
an object

The argument to a copy constructor should be a const
reference to allow a const object to be copied.

1 Account :: Account ( const Account & acc ):id( acc .id), name (
acc . name ), balance ( acc . balance ){

2 cout << " copy constructor is called \n";
3 withdrawTrans = new string [10];
4 transIndx = 0;
5 wtransIndx = 0;
6 for ( int i =0;i <10; i ++) {
7 transactions [i] = acc . transactions [i];
8 withdrawTrans [i] = acc . withdrawTrans [i];

Isfahan University of Technology 26



Lets start OO with C++ copy constructor

Copy Constructor

Copy constructors are invoked whenever a copy of an object is
needed, such as in

passing an object by value to a function,

returning an object by value from a function

initializing an object with a copy of another object of the same
class

Isfahan University of Technology 27



Lets start OO with C++ copy constructor

Copy Constructor

1 // call copy constructor to create acc8
2 // comment the copy constructor , then execute the code

to see the results by default copy constructor
3 Account acc7 { acc6 };
4 cout << " acc7 name : " << acc7 . getName () << ", id: " <<

acc7 . getId () << ", balance : " << acc7 . getBalance () <<
endl ;

5 acc7 . withdraw (500) ;
6 // withdrawTrans is not shared in acc7 and acc6
7 cout << " withdraw transaction [2] of acc6 : " << acc6 .

getWithdrawTrans () [2] < < endl ;
8 cout << " withdraw transaction [2] of acc7 : " << acc7 .

getWithdrawTrans () [2] < < endl ;
9

10 printInfo ( acc7 ); // copy constructor call in call by
object

11 Account acc8 = acc6 ; // copy constructor of acc6 is
called for initializing acc8

Isfahan University of Technology 28



Lets start OO with C++ copy constructor

For each class, the compiler provides a default copy
constructor that copies each member of the original object into
the corresponding member of the new object.
Dangerous! copy constructors can cause serious problems
when used with a class whose data members contain pointers
to dynamically allocated memory

If we don’t provide a copy constructor, the default copy
constructor does not allocate new memory for the array in the
new copy of the object
Our Account class must override the default copy constructor to
allocate the memories for the copy instatnce of object.

Isfahan University of Technology 29



Lets start OO with C++ copy constructor

Pointer Data Members and Copy Constructor

1 // call copy constructor to create acc8
2 // comment the copy constructor , then execute the code

to see the results by default copy constructor
3 Account acc7 { acc6 };
4 cout << " acc7 name : " << acc7 . getName () << ", id: " <<

acc7 . getId () << ", balance : " << acc7 . getBalance () <<
endl ;

5 acc7 . withdraw (500) ;
6 // withdrawTrans is not shared in acc7 and acc6
7 cout << " withdraw transaction [2] of acc6 : " << acc6 .

getWithdrawTrans () [2] < < endl ;
8 cout << " withdraw transaction [2] of acc7 : " << acc7 .

getWithdrawTrans () [2] < < endl ;
9

10 printInfo ( acc7 ); // copy constructor call in call by
object

11 Account acc8 = acc6 ; // copy constructor of acc6 is
called for initializing acc8

Isfahan University of Technology 30



Lets start OO with C++ Composition

Composition

A class can have objects of other classes as members. Such a
software-reuse capability is called composition (or aggregation)

Our lovely! Account class can have a Date data member to
sotre the expiration date of the account

1 class Date {
2 int year ;
3 int mon ;
4 int day ;
5 public :
6 Date ();
7 Date (int ,int , int );
8 Date ( const Date &);
9 int getDay ();
10 int getMon ();
11 int getYear ();
12 };

Isfahan University of Technology 31



Lets start OO with C++ Composition

Member object initialization

If a member object is not initialized through a member initializer,
the member object’s default constructor will be called implicitly

The C++ default constructor does not initialize the class’s
fundamental type data members, but does call the default
constructor for each data member that’s an object of another
class

Isfahan University of Technology 32



Lets start OO with C++ Composition

expireDate data member initialization:
1 Account :: Account ( long val , Date d):id (++ genID ),

expireDate (d){
2 if (val >=0)
3 balance = val ;
4 else
5 balance = 0;

Defining an account that has an object of Date class:
1 int main (){
2 Date date (1404 ,12 ,29) ;
3 Account acc1 ;
4 Account acc2 (" Arman " ,1000 , date );
5 }

Isfahan University of Technology 33


	Lets start OO with C++
	simple bank-account class
	Encapsulation
	Constructor
	Destructor
	this poniter
	static members
	const members
	copy constructor
	Composition


