
 1 / 44

CLOUD COMPUTING
Cloud Applications
Zeinab Zali
Isfahan University Of Technology

(References: Dan C. Marinescu - Cloud Computing_ Theory and Practice,

http://storm.apache.org/, Coursera cloud computing course-Professor Indranil Gupta)

http://storm.apache.org/

 2 / 44

Data streaming
concepts

 3 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Data streaming
● Data streaming is the transfer of data at a

steady high-speed rate, with low and well-
controlled latency
– There is very high data volume
– decisions have to be made in real-time

● This data needs to be processed sequentially

and incrementally on a record-by-record basis
or over sliding time windows
– used for a wide variety of analytics including

correlations, aggregations, filtering, and
sampling

 4 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Data streaming Examples

● log files generated by customers using mobile or
web applications

● information from social networks

– e.g., Twitter real-time search
● Website statistics

– e.g., Google Analytics
● Packet processing in Intrusion detection systems

– Also processing alerts in IDS, e.g., in most
datacenters

 5 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Stream vs batch processing

Stream processing Batch processing

individual records or micro
batches

large data batches

only the most recent data or
data over a rolling time window

the entire, or a large segment
of a data set

latency of milliseconds Latency of minute or hours

simple response functions,
aggregates, and rolling metrics

carrying out complex analytics

hard to reason about the
global state

well-defined system state to
checkpoint and later restart
the computation

 6 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Well-known streaming tools(I)

● Apache Storm: It holds true streaming model
for stream processing via core storm layer
– can be created in Java, Scala, and Clojure

● Apache Spark: It acts as a wrapper over the
batch processing

– can be created in Java, Python, Scala, and R

 7 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Well-known streaming tools(II)

● MillWheel: a framework for building low-
latency data-processing applications that is
widely used at Google
– Users specify a directed computation graph

and application code for individual nodes
– the system manages persistent state and the

continuous flow of records

 8 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Why not MapReduce?

● MapReduce, Hadoop, etc., store and process
data at scale, but not for real-time systems

● There's no hack that will turn Hadoop into a
real-time streaming system

– Fundamentally different set of
requirements than batch processing

 9 / 44

Storm

 10 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Storm Components

● Streams
● Spouts
● Bolts
● Stream groupings
● Topologies
● Reliability
● Tasks
● Workers

 11 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Tuple

● An ordered list of elements
● E.g., <tweeter, tweet>

– E.g., <“Miley Cyrus”, “Hey! Here’s my new song!”>

– E.g., <“Justin Bieber”, “Hey! Here’s MY new song!”>

● E.g., <URL, clicker-IP, date, time>
– E.g., <coursera.org, 101.201.301.401, 4/4/2014,

10:35:40>

– E.g., <coursera.org, 901.801.701.601, 4/4/2014,
10:35:42>

 12 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Stream
● A stream is an unbounded sequence of tuples

that is processed and created in parallel in a
distributed fashion
– The stream is the core abstraction in Storm

● Social network example:
– <“Miley Cyrus”, “Hey! Here’s my new song!”>,

<“Rolling Stones”, “Hey! Here’s my old song that’s still
a super-hit!”>, ...

● Website example:
– <coursera.org, 101.201.301.401, 4/4/2014, 10:35:40>,

<coursera.org, 901.801.701.601, 4/4/2014, 10:35:42>,
...

 13 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spout

● A Storm entity (process) that is a source of
streams

● Generally spouts will read tuples from an
external source
– Ex: from a crawler or DB

 14 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bolt

● A Storm entity (process) that

– Processes input streams

– Outputs more streams for other bolts
● Bolts are the only entity in storm that can do

processing, that is anything:

– from filtering, functions, aggregations, joins,
talking to databases, and more

 15 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bolts types

● Operations that can be performed
– Filter: forward only tuples which satisfy a

condition
– Joins: When receiving two streams A and B,

output all pairs (A,B) which satisfy a condition
– Apply/transform: Modify each tuple according

to a function
– And many others

● bolts need to process a lot of data

– Need to make them fast

 16 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Topology (I)

● A topology is a graph of spouts and bolts
– The logic for a realtime application is packaged

into a Storm topology

– A Storm topology is analogous to a MapReduce job

– MapReduce job eventually finishes, whereas a
topology runs forever (or until you kill it, of course)

 17 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Topology (II)

● Topology can have cycles if the application
requires it

 18 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Parallelizing Bolts

● Have multiple processes (“tasks”) constitute
a bolt

● Incoming streams split among the tasks
● Typically each incoming tuple goes to one

task in the bolt

– Decided by “Grouping strategy”

 19 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Stream Grouping

● Part of defining a topology is specifying for
each bolt which streams it should receive as
input

● A stream grouping defines how that stream
should be partitioned among the bolt's tasks

● There are some built-in stream groupings in
Storm, and you can implement a custom stream
grouping

 20 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Stream Grouping Types

● Shuffle Grouping: Streams are distributed evenly
across the bolt’s tasks
– Ex: Round-robin fashion

● Fields Grouping: Group a stream by a subset of
its fields
– E.g., All tweets where twitter username starts with

[A-M,a-m,0-4] goes to task 1, and all tweets
starting with [N-Z,n-z,5-9] go to task 2

● All Grouping:
– All tasks of bolt receive all input tuples

– Useful for joins

 21 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Storm cluster
● Master node: Runs a daemon called Nimbus,

Responsible for

– Distributing code around cluster

– Assigning tasks to machines

– Monitoring for failures of machines

● Worker node: Runs on a machine (server)

– Runs a daemon called Supervisor

– Listens for work assigned to its machines
● Zookeeper: Coordinates Nimbus and Supervisors

communication

– All state of Supervisor and Nimbus is kept here

 22 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Storm architecture

 23 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Failures and Reliability

● Spouts can either be reliable or unreliable
– A reliable spout is capable of replaying a tuple

if it failed to be processed by Storm
– unreliable spout forgets about the tuple as

soon as it is emitted
● A tuple is considered failed when its topology of

resulting tuples fails to be fully processed within
a specified timeout

– Anchoring: Anchor an output to one or more
input tuples, so Failure of one tuple causes
one or more tuples to replayed

 24 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

API For Fault-Tolerance

● Emit(tuple, output): Emits an output tuple,
perhaps anchored on an input tuple

● Ack(tuple): Acknowledge that you finish
processing a tuple

● Fail(tuple): Immediately fail the spout tuple at
the root of tuple topology if there is an
exception from the database, etc.

● Must remember to ack/fail each tuple
– Each tuple consumes memory. Failure to do so

results in memory leaks.

 25 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Storm Example: Word Count

Split Sentence Bolt

Word Count Bolt

Sentence Spout

Sort Bolt

{“sentence”:”There are now more than 2.1 million
diagnosed cases of COVID-19.”},
{“sentence”:”Remember when the Washington
Post said that COVID was no big deal and the flu
was worse?
”},
{“sentence”:”CNN says Hong Kong is now seeing
a second wave of COVID patients”},...

{“word”:”There”}, {“word”:”are”},
{“word”:”now”},{“word”:”more”},
...

{“word”:”COVID”, “count”:3},
{“word”:”now”, “count”:2},
...

{“word”:”There”, “count”:1},
{“word”:”COVID”, “count”:3},
...

Report Bolt

 26 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Example: Parallelism in storm

Split Sentence Bolt

Word Count Bolt

Sentence Spout

Sort Bolt

Report Bolt

Sentence Spout

Split Sentence BoltSplit Sentence Bolt

Word Count Bolt

Sort Bolt

...

...

Sorts partial lists

Emits a new tuple any time a count
 is updated

Emits all the word tuples any time a new
sentence is seen

 27 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Example: Programming
import twitter4j.*;
public class TwitterSampleSpout extends BaseRichSpout {
 private LinkedBlockingQueue<Status> queue;
 public TwitterSampleSpout(accessKeys) {

 }

 @Override
 public void open(Map conf, TopologyContext context,
 SpoutOutputCollector collector) {
 StatusListener listener = new StatusListener() {

 }
 }
 @Override
 public void nextTuple() {
 if ((status=queue.poll())!=NULL)
 collector.emit(new Values(status));}
 }

. . .
. . .

 28 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Example: Programming
public class SplitSentenceBolt extends BaseRichBolt{
 private OutputCollector collector;
 @Override

 public void prepare(Map config, TopologyContext
 context, OutputCollector collector) {
 this.collector = collector;
 }
 @Override //Code to split a sentence

 public void execute(Tuple tuple) {
 String sentence = tuple.getStringByField("sentence");
 String[] words = sentence.split(" ");
 for(String word : words){
 this.collector.emit(new Values(word));
 }
 }
 public void declareOutputFields(OutputFieldsDeclarer declarer) {
 declarer.declare(new Fields("word"));}

}

 29 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Example: Programming
public class WordCountBolt extends BaseRichBolt {
 ...
 @Override
 public void prepare(Map config, TopologyContext
 context, OutputCollector collector) {
 this.collector = collector;
 this.counts = new HashMap<String, Long>();
 }
 @Override //Code to count words
 public void execute(Tuple tuple) {
 String word = tuple.getStringByField("word");
 If ((count=this.counts.get(word))==null){
 count = 0;}
 count++;
 this.counts.put(word, count);
 this.collector.emit(new Values(word, count));
 }

 public void declareOutputFields(OutputFieldsDeclarer declarer) {

 declarer.declare(new Fields("word", “count”));} }

 30 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Example: Programming
public class SortBolt extends BaseRichBolt {
 …
 private final List<WordCount> sortedWords = new
ArrayList<WordCount>(N);
 @Override

 public void prepare(){
 //new thread to call emition every t seconds
 }
 @Override //Code to sort a collection

 public void execute(Tuple tuple) {
 String word = tuple.getStringByField("word");
 //search in a sorted collection (sortedWords)
 //and place it in its correct place
 ….

 }
 Private void emition(){
 this.collector.emit(sortedWords);}

}

public static class WordCount {
 String word; long count;
 public WordCount(String word,
 long count) {
 this.word = word;
 this.count = count; }
}

 31 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Example: Programming
public class ReportBolt extends BaseRichBolt {
 …
 private final List<WordCount> sortedWords = new
ArrayList<WordCount>(N);
 @Override //Code to sort a collection

 public void execute(Tuple tuple) {
 PartialList sortedWords=tuple.getStringByField("list");
 //merge it with the global sortedWords

 }

 @Override //Storm calls this method when a bolt is about to be shutdown
 public void cleanup() {

 //prints the sortedWords in a file or output

 }

}

 32 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Example: Programming
Public class wordCountTopology(){

 Public static void main(){

 TopologyBuilder builder = new TopologyBuilder();

 builder.setSpout(1, new TwitterSampleSpout(accessKeys), 1);

 builder.setBolt(2, new SplitSentenceBolt(), 8).shuffleGrouping(1);

 builder.setBolt(3, new WordCountBolt(), 12).fieldGrouping(2, new
Fields(“word”));

 builder.setBolt(4, new SortBolt(), 12).fieldGrouping(3, new
Fields(“word”));

 builder.setBolt(5, new ReportBolt(), 1).globalGrouping(4);

 StormSubmitter.submitTopology(“word count”, builder.createTopology);

}

 33 / 44

Spark streaming

Resources:
Cloud Computing, Theory and practice, Dan.C. , chapter 12.6 Spark streaming
Spark documentation
Coursera, cloud computing applications, Reza Farivar

 34 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

storm weakness (I)

● Traditional streaming systems like storm have a
record-at-a-time processing model
– Each node has mutable state
– For each record, update state and send new

records
– State is lost if node dies!

● Anchoring in storm

– Replay one or some anchored tuples if a
tuple is failed to be processed

 35 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

storm weakness (II)

● Storm Replays record if not processed by a
node
– May update mutable state twice!
– Mutable state can be lost due to failure!

Anchoring may result in
 “not exactly once process”

 36 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark vs storm (I)

● Spark streaming supports stateless
operations acting independently in each time
interval, as well as aggregation over time
window
– Window a bit of data

– Run a batch

– Repeat

 37 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark vs storm (III)

 38 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark project

● Spark is Most contributed open source project
in big-data domain (Berekely project)
– It is a fast and general-purpose cluster

computing system
– It provides APIs in Java, Scala, Python and R
– It supports a rich set of higher-level tools

● Spark SQL for SQL and structured data
processing

● MLlib for machine learning
● GraphX for graph processing
● Spark Streaming

 39 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Resilient Distributed Dataset
(RDD)

● The main abstraction Spark provides is RDD
● RDD is a collection of elements partitioned

across the nodes of the cluster that can be
operated on in parallel

– RDD provides low latency

– RDD provides ability to rebuild lost data without
replication

 40 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Discretized stream (D-Stream)

● D-streams: streaming model in spark

– Chops up the live stream into batches of X seconds

– Spark treats each batch of data as RDDs and
processes them using RDD operations

– The processed results of the

RDD operations are

returned in batches

– Batch sizes as low as 0.5s

public StreamingContext(SparkConf conf,
 Duration batchDuration)

https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/SparkConf.html
https://spark.apache.org/docs/2.2.0/api/java/org/apache/spark/streaming/Duration.html

 41 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark usual operations

● transformations available in batch frameworks

– Stateless and statefull transform operators

● Stateless: they act independently on each time
interval

● Statefull: they share data among intervals

– Output operators
● they save data, e.g., store RDDs on HDFS

saveAsHadoopFiles(prefix, [suffix])
saveAsTextFiles(prefix, [suffix]),...

map(func), join(otherStream), reduce(func), count(),...

updateStateByKey(func)

 42 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark streaming window
operations

● Window: grouping records from a range of
past intervals into one RDD.
– allow to apply transformations over a sliding

window of data

– the source RDDs that fall within the window are
combined and operated upon to produce the
RDDs of the windowed DStream

CountByWindow
 (windowLength, slideInterval),
ReduceByWindow(
 func, windowLength, slideInterval)
,...

 43 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

DStream Input Sources

● Out of the box

– Kafka
– HDFS
– Flume
– Akka Actors
– Raw TCP sockets

● Very easy to write a receiver for your own
data source

 44 / 44

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Druid and Spark

● Druid is a column-oriented distributed data
store that is ideal for powering user-facing
data applications
– Druid's focus is on extremely low latency

queries
● Druid and Spark are complementary solutions

as Druid can be used to accelerate OLAP
queries in Spark
– Druid fully indexes all data, and can act as a

middle layer between Spark and your
application

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

