CLOUD COMPUTING
I Cloud Applications

Zeinab Zali
Isfahan University Of Technology

I Spark

References:

“Spark: Cluster Computing with Working Sets”, Matei Zaharia, et. al. 2nd USENIX conference on HotCloud’10
“Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing”
Matei Zaharia, et. al. 9th USENIX conference on NSDI'12

spark.apache.org, www.edureka.co

2/22

I Spark Motivation (1)

» Extend the MapReduce model to better
support two common classes of analytics

apps:
- |terative algorithms (machine learning,
graphs)

- Interactive data mining

 Enhance programmability
- Integrate into Scala programming language
- Allow interactive use from Scala interpreter

» speeding up the Hadoop computational
computing software process 322

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark Motivation (Il)

* Traditional MapReduce and classical parallel
runtimes cannot solve iterative algorithms
efficiently

- MapReduce solution:

« Split iteration into multiple MapReduce jobs.
* Write a driver program for orchestration

- Hadoop: Repeated data access to HDFS, no

optimization to data caching and data
transfers

Iterate {
Map: for (each)i=1to M
Compute();
Reduce();
} Until converged();

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I Spark Features

 The main feature of Spark is its in-memory
cluster computing that increases the
processing speed of an application

* cover a wide range of workloads
- batch applications
- Iterative algorithms
- Interactive queries
- streaming

5/22
Cloud Computing, Zeinab Zali

ECE Department, Isfahan University of Technology

I Spark Ecosystem

« Components
- Core, streaming, SQL, GraphX, Mlib, SparkR
* APIs

- Scala, Java, Python, R

@ ” “ﬂ\
SOL ™~
AN

6/22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark Architecture (I)

Spark applications run as independent sets of

processes on a cluster coordinated by the
SparkContext object in the main program (driver).

- Waorker Mode

Execut-:-r Cache

Driver Program

/ Task || Task
SparkContext Cluster Manager

‘\‘ Worker Node
Master Node \ Executor | Cache

—¥| | Task Task [

7122

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I Spark concepts

* Driver Program: The process running the main()
function of the application and creating the
SparkContext

- In the interactive shell, the shell acts as the driver
program.

 Task: A unit of work that will be sent to one executor

* Job: A parallel computation consisting of multiple
tasks that gets spawned in response to a Spark
action (e.g. save, collect);

« Stage: Each job gets divided into smaller sets of
tasks called stages that depend on each other
(similar to the map and reduce stages in
MapReduce);

8/22
Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I Cluster Manager types

» Standalone: a simple cluster manager
iIncluded with Spark that makes it easy to set
up a cluster.

* Apache Mesos: a general cluster manager
that can also run Hadoop MapReduce and
service applications.

 Hadoop YARN: the resource manager in
Hadoop 2.

« Kubernetes: an open-source system for
automating deployment, scaling, and

management of containerized applications.
9/22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark main abstractions:
RDD (1)

 RDD: a fault-tolerant immutable collection of
elements that can be operated on in parallel

- Resilient: Fault tolerant and is capable of rebuilding
data on failure

— Distributed: Distributed data among the multiple nodes
in a cluster

- Dataset: Collection of partitioned data with values

Partition 1

1
.
’
4
’
.
.
-

Frinssnnneannneneaeaneas p. Partition 2
-—-_.-—/. Partition 3

Partition 4 10/ 22

RDD 4

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark main abstractions:
RDD (1l)

* Operations on RDD:

- (1) Transformations, (2) Actions
* Two ways to create RDD:

- (1) parallelizing an existing collection in the driver
program, (2) referencing a dataset in an external
storage system such as a shared filesystem,

HDFS, # a

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Spark main abstractions:
DAG

 DAG (Directed Acyclic Graph): a sequence of
computations performed on data where each
node is an RDD partition and edge is a
transformation on top of data.

- The DAG abstraction helps eliminate the
Hadoop MapReduce multi-stage execution
model and provides performance
enhancements over Hadoop

12 /22

ECE Department, Isfahan University of Technology

Cloud Computing, Zeinab Zali

I RDD Operations

* Transformations: They are the operations that
are applied to create a new RDD.

* Actions: They are applied on an RDD to
instruct Apache Spark to apply computation
and pass the result back to the driver.

13/22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I Spark Programming

I Importing spark libraries

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf

Scala

import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.SparkConf;

Java

from pyspark import SparkContext, SparkConf

Python

15/22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I Initializing Spark

val conf = new SparkConf().setAppName(appName) .setMaster(master)

val sc = new SparkContext(conf)

Scala

SparkConf conf = new SparkConf().setAppName(appName).setMaster(master);
JavaSparkContext sc = new JavaSparkContext(conf);

Java

conf = SparkConf().setAppName(appName) .setMaster(master)
sc = SparkContext(conf=conf)

Python
16 /22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Creating RDD

 Parallelized Collections

val data = Array(1l, 2, 3, 4, 5)
val distData = sc.parallelize(data)

e Eexternal Datasets

- Spark can create distributed datasets from any
storage source supported by Hadoop, including
your local file system, HDFS, Cassandra, HBase,
Amazon S3

- the file must also be accessible at the same path
on worker nodes

- Spark supports any Hadoop InputFormat

val distFile = sc.textFile("data.txt") 17 /22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I RDD Operations

* Transformations: create a new dataset from
an existing one

» Actions: return a value to the driver program
after running a computation on the dataset

» All transformations in Spark are lazy, in that
they do not compute their results right away

- each transformed RDD may be recomputed
each time you run an action on it

- you may also persist an RDD in memory using
the persist (or cache) method

18 /22
Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I Transformations Examples

* map(func): Return a new distributed dataset formed
by passing each element of the source through a
function func.

 filter(func): Return a new dataset formed by
selecting those elements of the source on which func
returns true.

 union(otherDataset): Return a new dataset that
contains the union of the elements in the source
dataset and the argument.

* Intersection(otherDataset): Return a new RDD that
contains the intersection of elements in the source
dataset and the argument.

19/ 22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I Actions Examples

* reduce(func): Aggregate the elements of the
dataset using a function func (which takes two
arguments and returns one)

« count(): Return the number of elements INn the
dataset.

* Collect(): Return all the elements of the dataset
as an array at the driver program.

 foreach(func): Run a function func on each
element of the dataset.

20/ 22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

I Example: Text Search

* Count the lines containing errors in a large
log file stored in HDFS

val file = spark.textFile("hdfs://...")

val errs = file.filter(.contains ("ERROR"))
val ones = errs.map(_ => 1)

val count = ones.reduce(+)

21/ 22
Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Logistic Regression

// Read points from a text file and cache them
val points = spark.textFile(...)
.map (parsePoint) .cache ()
// Initialize w to random D-dimensional vector
var w = Vector.random (D)
// Run multiple iterations to update w
for (1 <= 1 to ITERATIONS) {
val grad = spark.accumulator (new Vector (D))
for (p <= points) { // Runs in parallel
val s = (1/(l+exp(-p.y*(w dot p.x)))-1)*p.y
grad += s * p.X

w —= grad.value

22 /22

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

