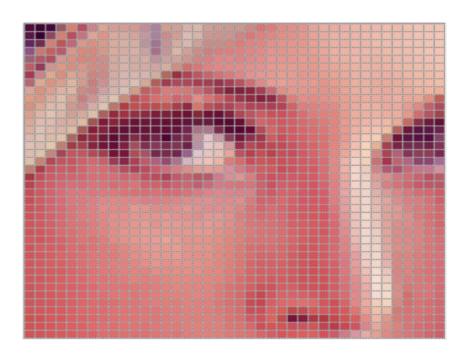
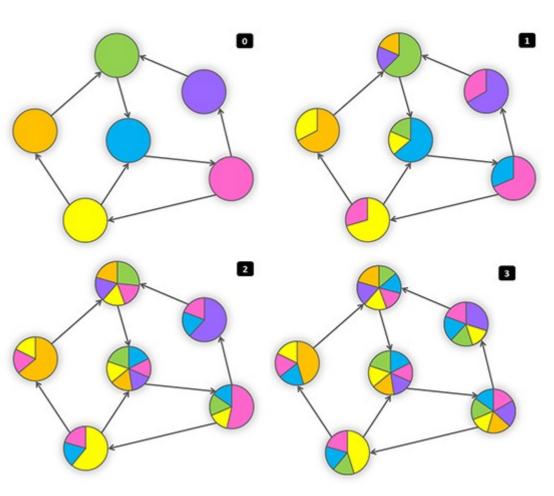

CLOUD COMPUTING Cloud Applications


Zeinab Zali Isfahan University Of Technology

MapReduce Examples

Image Smoothing

 To smooth an image, use a sliding mask and replace the value of each pixel



What are Mapper and Reducer?

- Map: input key = x, y input value = R, G, B
 - Emit 9 points
 - (x-1, y-1, R, G, B)
 - (x, y-1, R, G, B)
 - (x+1, y-1, R, G, B)
 - Etc.
- Reduce: input key = x, y input value: list of R,
 G, B
 - Compute average R, G, B
 - Emit key = x, y value = average R, G, B

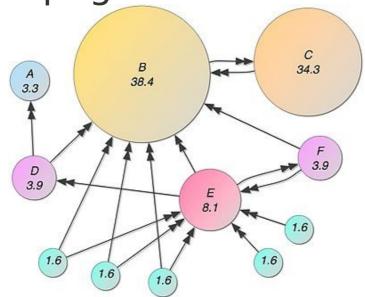
Iterative Message Passing (Graph Processing)

- In network of entities and relationships between them, It is required to calculate a state of each entity on the basis of properties of the other entities in its neighborhood
 - Ex: Distance to other nodes

Iterative Message Passing

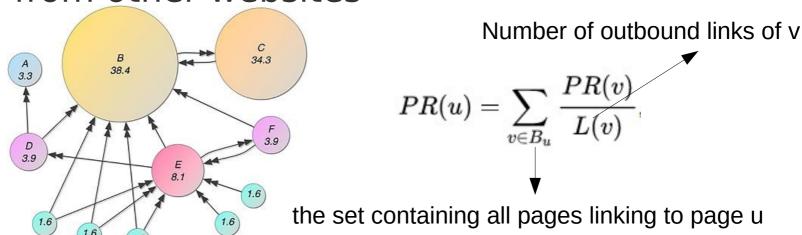
- A network is stored as a set of nodes and each node contains a list of adjacent node IDs
- MapReduce jobs are performed in iterative way
 - at each iteration each node sends messages to its neighbors.
 - Each neighbor updates its state on the basis of the received messages.
- Iterations are terminated by some condition
 - fixed maximal number of iterations (say, network diameter)
 - negligible changes in states between two consecutive iterations

6 / 12


Iterative Message Passing

- Map: for each node, n, in the graph
 - Emit key=n_id, val=n_obj (containing its values)
 - For all the n's neighbors (outgoing links), m, Emit key=m_id, val=get message(n)
- Reduce: inputs of are records with the same key and all their values, key=n id,V=[v1, v2, ...]
 - new v=[]
 - For all v in V:
 - If n is object, old_v=v
 - If n is a message new v.add(v)
 - Emit (n id, calculate state(old v, new v)

7 / 12


Page Rank

- PageRank is an algorithm used by Google Search to rank web pages in their search engine results
 - It is a way of measuring the importance of website pages

Page Rank Algorithm(I)

- PageRank works by counting the number and quality of links to a page to determine a rough estimate of how important the website is.
 - The underlying assumption is that more important websites are likely to receive more links from other websites

9 / 12

Page Rank Algorithm(II)

- Phase 1: Propagation
- Phase 2: Aggregation
- Input: a pool of objects including both vertices and edges
 - Vertex: the web page
 - Edge: the link to another page

Propagation: What are Mapper and Reducer?

- Map: for each object
 - If it is a vertex, emit key=URL, val=obj
 - If it is an edge, emit key=source URL, val=obj
- Reduce:input is a web page and all the outgoing links
 - Find the number of edge objects → outgoing links
 - Read the pageRank value from the vertex obj
 - Assign PR(edges) = PR(vertex)/num_outgoing

Aggregation: What are Mapper and Reducer?

- Map: for each object
 - If it is a vertex: emit key=URL, val=obj
 - If it is an edge: emit key=destination URL,val = obj
- Reduce: input is a web page and all the incoming links
 - Add PR value of all the incoming links
 - Assign PR(vertex)= Σ PR(incoming links)