
 1 / 73

CLOUD COMPUTING
Synchronization &
Coordination
Zeinab Zali
Isfahan University Of Technology

References: -Cloud computing: Theory and practice, Chapter 3
-Distributed systems: concepts and design, George Coulouris, Chapter 15
-https://www.cs.rutgers.edu/~pxk/417/notes/paxos.html
-

 2 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Problem statement
● Goal:

– for a set of processes to coordinate their actions
or to agree on one or more value

– The computers must be able to do so even where
there is no fixed master-slave relationship
between the components

● Example:

– Synchronizing hadoop cluster nodes for doing a
single task

– leader/master election

– Use barriers to block processing of a set of nodes
until a condition is met

 3 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

 Failure assumptions and failure
detectors

● Each pair of processes is connected by reliable
channels
– although the underlying network components may

suffer failures, the processes use a reliable
communication protocol that masks these failures –
for example, by re-transmitting missing or corrupted
messages

● No process failure implies a threat to the other
processes’ ability to communicate.

– This means that none of the processes depends
upon another to forward messages.

● Processes may fail only by crashing

 4 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Distributed Mutual
Exclusion

 5 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Critical section problem

● If a collection of processes share a resource
or collection of resources, then often mutual
exclusion is required to prevent interference
and ensure consistency when accessing the
resources

● In a distributed system, however, neither
shared variables nor facilities supplied by a
single local kernel can be used to solve it, in
general.

● We require a solution to distributed mutual
exclusion: one that is based solely on message
passing

 6 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

executing a critical section
● The application-level protocol for executing a

critical section is as follows:

enter() // enter critical section – block if necessary

ResourceAccesses() // access shared resources in critical section

exit() // leave critical section – other processes
 // may now enter

 7 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Essential requirements for
mutual exclusion
● ME1 (safety): At most one process may execute

in the critical section (CS) at a time.

● ME2 (liveness): Requests to enter and exit the
critical section eventually succeed

– Deadlock: involve two or more of the processes
becoming stuck indefinitely while attempting to enter
or exit the critical section

– Starvation: the indefinite postponement of entry
for a process that has requested it (→ no fairness)

● ME3: (→ ordering): If one request to enter the CS
happened-before another, then entry to the CS is
granted in that order (no ME3 → no fairness)

 8 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

 Evaluating the performance of
ME algorithms

● The bandwidth consumed: it is proportional to
the number of messages sent in each entry and
exit operation;

● Delay: the client delay incurred by a process at
each entry and exit operation;

● Algorithm’s throughput: This is the rate at which
the collection of processes as a whole can access
the critical section

– We measure the effect using the synchronization
delay between one process exiting the critical
section and the next process entering it; the
throughput is greater when the synchronization
delay is shorter.

 9 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Multicast synchronization

● Basic idea: processes that require entry to a
critical section multicast a request message,
and can enter it only when all the other
processes have replied to this message

 10 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Maekawa’s voting algorithm

● A ‘candidate’ process must collect sufficient
votes to enter (but not all the votes like
previous multicast method)

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.6
Maekawa’s algorithm

On initialization
state := RELEASED;
voted := FALSE;

For pi to enter the critical section
state := WANTED;
Multicast request to all processes in Vi;
Wait until (number of replies received = K);
state := HELD;

On receipt of a request from pi at pj

if (state = HELD or voted = TRUE)
then

queue request from pi without replying;
else

send reply to pi;
voted := TRUE;

end if

For pi to exit the critical section
state := RELEASED;
Multicast release to all processes in Vi;

On receipt of a release from pi at pj

if (queue of requests is non-empty)
then

remove head of queue – from pk, say;
send reply to pk;
voted := TRUE;

else
voted := FALSE;

end if

 12 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Maekawa’s voting algorithm

● What is the optimal solution?
– We should minimize K

–

● It is non-trivial to calculate the optimal sets Ri

– approximation: place the processes in a
matrix and let Ri be the union of the row and
column containing pi .

 13 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Maekawa’s voting properties

✔ This algorithm achieves the safety property,
ME1

– If it were possible for two processes pi and pj to
enter the critical section at the same time, then the
processes in would have to have voted
for both i and j

✗ Unfortunately, the algorithm is deadlock-prone

– Consider three processes, p1 , p2, p3 , with
V1={p1,p2} , V2 ={p2, p3} and V3 = {p3, p1}, If the
three processes concurrently request entry to the
critical section

● p1 replies to itself and hold off p2 , p2 reply to itself
and hold off p3 , and p3 reply to itself and hold off p1

 14 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Maekawa’s voting properties

✔ We can achieve ME2 and ME3 through
ordering the requests

 15 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Maekawa’s voting performance

● bandwidth utilization is messages per
entry to the critical section

● messages per exit
● The total is less than the 2(N – 1)

messages required by Ricart and Agrawala’s
(if N > 4)

● The client delay is the same as that of Ricart
and Agrawala’s algorithm

– but the synchronization delay is worse: a
round-trip time instead of a single message
transmission time.

 16 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Election

 17 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Election in DS

● An algorithm for choosing a unique process
to play a particular role is called an election
algorithm

● Examples:
– In central-server algorithm for mutual exclusion,

the ‘server’ is elected from among the processes
that need to use the critical section

– Selecting a master between some replica in
Google File System

 18 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Election applications

● Leader is useful for coordination among
distributed servers

● Apache Zookeeper
– a centralized service for maintaining configuration

information, naming, providing distributed
synchronization, and providing group services

● Google’s Chubby

– Providing lock service for loosely-coupled
distributed systems

 19 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Election problem
● In a group of processes, elect a Leader to

undertake special tasks

– And let everyone know in the group about this
Leader

● What happens when a leader fails (crashes)

– Some process detects this (using a Failure
Detector!) Then what?

● Election algorithm goal:

– 1. Elect one leader only among the non-faulty
processes

– 2. All non-faulty processes agree on who is the
leader

 20 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

System Model

● N processes.
● Each process has a unique id.
● Messages are eventually delivered.
● Failures may occur during the election

protocol.

 21 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Calling election
● Any process can call for an election
● A process can call for at most one election at

a time.
● Multiple processes are allowed to call an

election simultaneously.

– All of them together must yield only a
single leader

● The result of an election should not depend
on which process calls for it.

 22 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Election algorithm requirements

● A run of the election algorithm must always
guarantee at the end:

– Safety: For all non-faulty processes p: (p’s
elected = (q: a particular non-faulty
process with the best attribute value) or
Null)

– Liveness: For all election runs: (election run
terminates) and for all non-faulty
processes p: p’s elected is not Null

 23 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Election algorithm requirements

● At the end of the election protocol, the non-
faulty process with the best (highest) election
attribute value is elected.

– Common attribute: leader has highest id
– Other attribute examples: leader has

highest IP address, or fastest computation
(lowest computational load), or most disk
space, or most number of files, etc

 24 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm

● Allows processes to crash during an election,
although it assumes that message delivery
between processes is reliable

● The algorithm assumes that the system is
synchronous

– it uses timeouts to detect a process failure
● The bully algorithm, assumes that each

process knows which processes have higher
identifiers, and that it can communicate with
all such processes

 25 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm
● All processes know other process’ ids
● When a process finds the coordinator has

failed (via the failure detector):

– if it knows its id is the highest, it elects
itself as coordinator, then sends a
Coordinator message to all processes with
lower identifiers. Election is completed.

– else it initiates an election by sending an
Election message

 26 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm

– else it initiates an election by sending
an Election message

● Sends it to only processes that have a
higher id than itself.

● if receives no answer within timeout, calls
itself leader and sends Coordinator
message to all lower id processes. Election
completed.

● if an answer received however, then there
is some non-faulty higher process => so,
wait for coordinator message. If none
received after another timeout, start a new
election run.

 27 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm

● A process that receives an Election message
replies with OK message, and starts its own
leader election protocol (unless it has already
done so)

 28 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm Example

 29 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm Example

 30 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm Example

 31 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm Example

 32 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Bully algorithm Example

 33 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Failure during election run

 34 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Failure during election run

 35 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Failure during election run

 36 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Failures and Timeouts
● If failures stop, eventually will elect a leader

● How do you set the timeouts?

● Based on Worst-case time to complete election

– 5 message transmission times if there are no
failures during the run:

1. Election from lowest id server in group

2. Answer to lowest id server from 2nd highest id
process

3. Election from 2nd highest id server to highest id

4. Timeout for answers @ 2nd highest id server

5. Coordinator from 2nd highest id server

 37 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Analysis
● Worst-case completion time: 5 message

transmission times
– When the process with the lowest id in the

system detects the failure.
● (N-1) processes altogether begin elections,

each sending messages to processes with
higher ids.

● i-th highest id process sends (i-1) election
messages

– Number of Election messages

= N-1 + N-2 + ... + 1 = (N-1)*N/2 = O(N2)

 38 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Analysis

● Best-case
– Second-highest id detects leader failure

– Sends (N-2) Coordinator messages

– Completion time: 1 message transmission time

 39 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

impossibility
● Since timeouts built into protocol, in

asynchronous system model:

– Protocol may never terminate => Liveness
not guaranteed

– But satisfies liveness in synchronous
system model where

● Worst-case latency can be calculated =
worst-case process time + worst-case
message latency

 40 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Why is Election so Hard?

● Because it is related to the consensus
problem!

● If we could solve election, then we could
solve consensus!

● Elect a process, use its id’s last bit as the
consensus decision

● But since consensus is impossible in
asynchronous systems, so is election

 41 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Consensus

 42 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

What is the problem

● problems of agreement:
– the problem is for processes to agree on a

value after one or more of the processes has
proposed what that value should be.

 43 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Three classic problem

● C: Consensus
● BG: Byzantine general problem
● IC: Interactive consistency
● Once we solve one of these problems,

another ones can be solved through the first
one

 44 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Solving one of 3 problems
from one another’s solution

● IC from BG
● BG from IC
● C from IC
● IC from C
● BG from C
● C from BG

 45 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Consensus Problem
definition
● every process pi begins in the undecided

state and proposes a single value vi , drawn
from a set D (i = 1, 2, …, N).

● The processes communicate with one
another, exchanging values.

● Each process then sets the value of a
decision variable, di

● In doing so it enters the decided state, in
which it may no longer change di(i = 1, 2,..,
N)

 46 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Consensus solution
requirement

● Termination: Eventually each correct process
sets its decision variable.

● Agreement: The decision value of all correct
processes is the same: if pi and pj are correct
and have entered the decided state, then di
= dj (i, j = 1, 2,..,N).

● Integrity: If the processes (correct or not) all
proposed the same value, then any correct
process in the decided state has chosen that
value.

 47 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Consensus in a system with
failure

● Consensus is possible to solve in a
synchronous system where message delays
and processing delays are bounded

● Consensus is impossible to solve in an
asynchronous system where these delays are
unbounded

 48 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Consensus in a
synchronous system
● The algorithm uses only a basic multicast

protocol.
● It assumes that up to f of the N processes

exhibit crash failures.
● To reach consensus, each correct process

collects proposed values from the other
processes.

● The algorithm proceeds in f + 1 rounds, in
each of which the correct processes multicast
the values between themselves

 49 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Consensus in a
synchronous system

 50 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Proof (agreement and
integrity after f+1 rounds)

● The duration of a round is limited by setting a
timeout based on the maximum time for a
correct process to multicast a message.

 51 / 73

Paxos

 52 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Paxos

● Paxos is an algorithm that is used to achieve
consensus among a distributed set of
computers that communicate via an
asynchronous network.

● One or more clients proposes a value to
Paxos and we have consensus when a
majority of systems running Paxos agrees on
one of the proposed values

 53 / 73

Paxos liveness

● Paxos won’t try to specify precise liveness
requirements.

● However, the goal is to ensure that some
proposed value is eventually chosen and, if a
value has been chosen, then a process can
eventually learn the value

 54 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Paxos application
● The most common use of Paxos is in

implementing replicated machines, such as
chunk servers in GFS
– To ensure that replicas are consistent,

incoming operations must be processed in the
same order on all systems.

– Each of the servers will maintain a log that is
sequenced identically to the logs on the other
servers.

– A consensus algorithm will decide the next
value that goes on the log.

– Then, each server simply processes the log in
order and applies the requested operations.

 55 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Paxos roles

● The nodes in paxos have three roles

– Proposers
– Acceptors
– Learners

● Paxos nodes may take multiple roles, even all
of them

● Paxos is a two phase algorithm

 56 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Phase Promise

● Proposer wants to propose a certain value

– It sends prepare (IDp) to a majority or all of the
acceptors (IDs must be unique)

● If timeout, retry with a new one (a greater one)

ID = timestamp+pid;

send PREPARE(ID)

● Acceptor recieves a prepare message for IDp

 Is this ID bigger than any round I have previously received?
 If yes
 store the ID number, max_id = ID
 respond with a PROMISE message
 If no
 do not respond (or respond with a "fail" message)

 57 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Phase Accept

● If a proposer received a PROMISE message from
the majority of acceptors, it now has to tell the
acceptors to accept that proposal. If not, it has to
start over with another round of Paxos.

PROPOSE(ID, VALUE)

● The acceptor accepts the proposal if the ID
number of the proposal is still the largest one
that it has seen.

 Is the ID the largest I have seen so far, max_id == N?
 if yes
 reply with an ACCEPTED message & send ACCEPTED(ID,
 VALUE) to all learners
 if no
 do not respond (or respond with a "fail" message)

 58 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Contention

proposer

acceptor

acceptor

acceptor

proposer

time
prepare(5)

prepare(6)

promise(5)

promise(6)

propose(5)

Fail 5

Prepare(7)

propose(6)

Fail 5

acc 6

Fail 6

promise(7)

prepare(8)

 59 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Fixing the protocol (I)

● acceptor receives a PREPARE(ID) message:

 is this ID bigger than any round I have previously received?
 if yes
 store the ID number, max_id = ID
 respond with a PROMISE(ID) message
 if no
 did I already accept a proposal?
 if yes
 respond with a PROMISE(ID, accepted_ID,
 accepted_VALUE) message
 if no
 do not respond (or respond with a "fail" message)

 60 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Fixing the protocol (II)

● proposer receives PROMISE(ID, [VALUE])
messages:

 do I have PROMISE responses from a majority of acceptors?
 if yes
 do any responses contain accepted values (from other
 proposals)?
 if yes
 pick the value with the highest accepted ID
 send PROPOSE(ID, accepted_VALUE) to at least a majority of
 acceptors
 if no
 we can use our proposed value
 send PROPOSE(ID, VALUE) to at least a majority of acceptors

 61 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Failure analysis

● Suppose failure of each of the players in
different phases and analyze how the
algorithm handle it

 62 / 73

Chubby

 63 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Chubby Goals

● Main Intention: Chubby is a distributed lock
service intended for advisory coarse-grained
synchronization of activities within Google’s
distributed systems;

● The primary goals: reliability, availability to a
moderately large set of clients, and easy-to-
understand semantics;

● The secondary goals: throughput and storage
capacity

 64 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

applications

● Google File System uses a Chubby lock to
appoint a GFS master server

● Bigtable uses Chubby in several ways:
– to elect a master
– to allow the master to discover the servers it

controls
– to permit clients to find the master

● both GFS and Bigtable use Chubby as a well-
known and available location to store a small
amount of meta-data;

 65 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Chubby Design
● A Chubby cell consisting of some replicas

(standard is 5), one of them is elected as the
master. Clients c1 , c2 , . . . , cn communicate
with the master using RPCs

 66 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Chubby Design

● Chubby replicas use asynchronous Paxos algorithm
to elect a new master (master lease) when the
current one fails

● Clients find the master by sending master
location requests to the replicas listed in the
DNS.

 67 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Chubby Design

● Clients use RPCs to request services from the
master.

– When a master receives a write request, it
propagates the request to all replicas and
waits for a reply from a majority of replicas
before responding.

– The master responds without consulting the
replicas when receiving a read request.

 68 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Chubby components

● Locks and Sequencers: Each Chubby file and
directory can act as a reader-writer lock
– either one client handle may hold the lock in

exclusive (writer) mode, or any number of
client handles may hold the lock in shared
(reader) mode.

● API: Clients see a Chubby handle as a pointer
to an opaque structure that supports various
operations. Handles are created only by
Open(), and destroyed with Close()

 69 / 73

Zookeeper

 70 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Zookeeper Goals

● ZooKeeper is a distributed coordination
service with this goals:
– Simplicity: With the help of a shared

hierarchical namespace, it coordinates. it is
organized as same as the standard file system
with znodes.

– Reliability: The system keeps performing, even
if more than one node fails.

– Speed: In the cases where ‘Reads’ are more
common, it runs with the ratio of 10:1.

– Scalability: By deploying more machines, the
performance can be enhanced.

 71 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Zookeeper Goals

 72 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Zookeeper Architecture

 73 / 73

Cloud Computing, Zeinab Zali ECE Department, Isfahan University of Technology

Companies Using
ZooKeeper

● Yahoo
● Hadoop and HBase
● Facebook
● eBay
● Twitter
● Netflix
● Zynga
● Nutanix

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Figure 15.6 Maekawa’s algorithm – part 1
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73

